Self Studies

Number Theory T...

TIME LEFT -
  • Question 1
    1 / -0

    If $$z = x + iy$$ and $$x^2 + y^2 = 16$$, then the range of $$\left|\left|x\right| - \left|y\right|\right|$$ is 

  • Question 2
    1 / -0

    If $$\displaystyle z_1\neq -z_2$$ and $$\displaystyle |z_1+z_2|=\left| \frac{1}{z_1}+\frac{1}{z_2}\right| $$ then

    Statement 1: $$z_1z_2$$ is unimodular.

    Statement 2: Both $$z_1$$ and $$z_2$$ are unimodular.

  • Question 3
    1 / -0

    The complex number z satisfies the condition $$\displaystyle \left | z- \frac{25}{z} \right | = 24$$. The maximum distance from the origin of co-ordinates to the point z is

  • Question 4
    1 / -0

    The roots of the equation $$z^n = (z + 1)^n$$ on the complex plane lie on the line

  • Question 5
    1 / -0

    If $$\left|z\right |^2 - 3 = 3\left|z\right|$$, then the value of $$\left|z\right|$$ is

  • Question 6
    1 / -0

    Find the complex numbers z which simultaneously satisfy the equation $$\displaystyle \left | \frac{z - 12}{z - 8 i} \right | = \frac{5}{3}$$ and $$\displaystyle \left | \frac{z - 4}{z - 8} \right | = 1$$.

  • Question 7
    1 / -0

    If $$z$$ is a complex number such that $$-\pi / 2 \le$$ arg $$ z \le \pi / 2,$$ then which of the following inequality is true? 

  • Question 8
    1 / -0

    If $$i{ z }^{ 3 }+{ z }^{ 2 }-z+i=0$$, then 

  • Question 9
    1 / -0

    Locate the complex number $$z = x + iy$$ for which $$log_{1/3} \{ log_{1/2} (|z|^2 + 4 |z| + 3) \} < 0$$

  • Question 10
    1 / -0

    Number of roots of the equation $$z^{10} - z^5 - 992 = 0$$ where real parts are negative is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now