Self Studies

Number Theory Test 26

Result Self Studies

Number Theory Test 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $${z}_{1},{z}_{2}$$ are two complex numbers and $$c>0$$ such that $${ \left| { z }_{ 1 }+{ z }_{ 2 } \right|  }^{ 2 }\le \left( 1+c \right) { \left| { z }_{ 1 } \right|  }^{ 2 }+k{ \left| { z }_{ 2 } \right|  }^{ 2 },$$ then $$k=$$
    Solution
    Since Re $$\displaystyle \left( { z }_{ 1 }{ \overline { z }  }_{ 2 } \right) \le \left| { z }_{ 1 }{ \overline { z }  }_{ 2 } \right| $$

    $$\displaystyle \therefore { \left| { z }_{ 1 } \right|  }^{ 2 }+{ \left| { z }_{ 2 } \right|  }^{ 2 }+Re\left( { z }_{ 1 }{ \overline { z }  }_{ 2 } \right) \le { \left| { z }_{ 1 } \right|  }^{ 2 }+{ \left| { z }_{ 2 } \right|  }^{ 2 }+2\left| { z }_{ 1 }{ \overline { z }  }_{ 2 } \right| $$

    $$\displaystyle \Rightarrow { \left| { z }_{ 1 }+{ z }_{ 2 } \right|  }^{ 2 }\le { \left| { z }_{ 1 } \right|  }^{ 2 }+{ \left| { z }_{ 2 } \right|  }^{ 2 }+2\left| { z }_{ 1 } \right| \left| { z }_{ 2 } \right| $$    ...(1)

    Also, Since $$A.M.\ge G.M.$$

    $$\displaystyle \therefore \frac { { \left( \sqrt { c } \left| { z }_{ 1 } \right|  \right)  }^{ 2 }+{ \left( \frac { 1 }{ \sqrt { c }  } \left| { z }_{ 2 } \right|  \right)  }^{ 2 } }{ 2 } \ge { \left\{ c.{ \left| { z }_{ 1 } \right|  }^{ 2 }.\frac { 1 }{ c } { \left| { z }_{ 2 } \right|  }^{ 2 } \right\}  }^{ \frac { 1 }{ 2 }  }\left( \because c>0 \right) $$

    $$\displaystyle \Rightarrow c{ \left| { z }_{ 1 } \right|  }^{ 2 }+\frac { 1 }{ c } { \left| { z }_{ 1 } \right|  }^{ 2 }\ge 2\left| { z }_{ 1 } \right| \left| { z }_{ 2 } \right| $$

    $$\displaystyle \therefore { \left| { z }_{ 1 } \right|  }^{ 2 }+{ \left| { z }_{ 1 } \right|  }^{ 2 }+2\left| { z }_{ 1 } \right| \left| { z }_{ 2 } \right| \le { \left| { z }_{ 1 } \right|  }^{ 2 }+{ \left| { z }_{ 2 } \right|  }^{ 2 }+c{ \left| { z }_{ 1 } \right|  }^{ 2 }+\frac { 1 }{ c } { \left| { z }_{ 2 } \right|  }^{ 2 }$$

    $$\displaystyle \Rightarrow { \left| { z }_{ 1 } \right|  }^{ 2 }+{ \left| { z }_{ 2 } \right|  }^{ 2 }+2\left| { z }_{ 1 } \right| \left| { z }_{ 2 } \right| \le \left( 1+{ c }^{ -1 } \right) \left( { \left| { z }_{ 2 } \right|  }^{ 2 } \right) $$     ...(2)

    From (1) and (2), we get

    $$\displaystyle { \left| { z }_{ 1 }+{ z }_{ 2 } \right|  }^{ 2 }\le \left( 1+c \right) { \left| { z }_{ 1 } \right|  }^{ 2 }+\left( 1+{ c }^{ -1 } \right) { \left| { z }_{ 2 } \right|  }^{ 2 }$$

    $$\displaystyle \therefore k=1+{ c }^{ -1 }$$
  • Question 2
    1 / -0
    Find the product and write the answer in standard form.
    $$\left( 2-4i \right) \left( 3+7i \right) $$
    Solution
    Given $$z=(2-4i)(3+7i)$$

    $$z=[2(3+7i)-4i(3+7i)]$$

       $$=[6+14i-12i-28i^2]$$

       $$=[34+2i]$$............[since, $$i^2=-1$$]
  • Question 3
    1 / -0
    The product of $$(3-2i)$$ and $$\left(\dfrac { 5 }{ 2 } -4i\right)$$, if $$i=\sqrt { -1 } $$ , is:
    Solution
    $$(3 - 2i) \times \left(\dfrac{5}{2} - 4i\right)$$

    $$= 3\left(\dfrac{5}{2} - 4i\right) - 2i\left(\dfrac{5}{2} - 4i\right)$$

    $$= \dfrac{15}{2} - 12i - 5i - 8$$

    $$= \dfrac{-1}{2} - 17i$$
  • Question 4
    1 / -0
    The resultant complex number when $$(4+6i)$$ is divided by $$(10-5i)$$ is
    Solution
    The value of $$\cfrac{4 + 6i}{10 - 5i}$$ 
    $$= \cfrac{4 + 6i}{10 - 5i} \times \cfrac{10 + 5i}{10 + 5i}$$
    $$= \cfrac{(4 + 6i)(10 + 5i)}{(10 - 5i)(10 + 5i)}$$
    $$= \cfrac{40 + 20i + 60i - 30}{100 + 25}$$
    $$= \cfrac{10 + 80i}{125}$$
    $$= \cfrac{2}{25} + \cfrac{16}{25}i$$
  • Question 5
    1 / -0
    Find the product. Write the answer in standard form.
    $$i\left( 6-2i \right) \left( 7-5i \right) $$
    Solution
    Given $$z=i(6-2i)(7-5i)$$

    $$z=i[6(7-5i)-2i(7-5i)]$$

       $$=i[42-30i-14i+10i^2]$$

       $$=i[32-44i]$$............[since, $$i^2=-1$$]

       $$=-44i^2+32i$$

    $$z=44+32i$$
  • Question 6
    1 / -0
    Let $${ X }_{ n }=\left\{ z=x+iy:{ \left| z \right|  }^{ 2 } \le \dfrac { 1 }{ n }  \right\} $$ for all integers $$n\ge 1$$. Then, $$\displaystyle\bigcap _{ n=1 }^{ \infty  }{ { X }_{ n } } $$ is
    Solution
    Given, $${ X }_{ n }=\left\{ z=x+iy:{ \left| z \right|  }^{ 2 }\le \dfrac { 1 }{ n }  \right\} $$
                      $$=\left\{ { x }^{ 2 }+{ y }^{ 2 }\le \dfrac { 1 }{ n }  \right\} $$
    $$\therefore { X }_{ 1 }=\left\{ { x }^{ 2 }+{ y }^{ 2 }\le 1 \right\} $$
         $${ X }_{ 2 }=\left\{ { x }^{ 2 }+{ y }^{ 2 }\le \dfrac { 1 }{ 2 }  \right\} $$
         $${ X }_{ 3 }=\left\{ { x }^{ 2 }+{ y }^{ 2 }\le \dfrac { 1 }{ 3 }  \right\} $$
         .............................................
         .............................................
         .............................................
         $${ X }_{ \infty  }=\left\{ { x }^{ 2 }+{ y }^{ 2 }\le 0 \right\} $$
    $$\therefore \bigcap _{ n=1 }^{ \infty  }{ { X }_{ n } } ={ X }_{ 1 }\cap { X }_{ 2 }\cap { X }_{ 3 }\cap \dots \cap { X }_{ \infty  }$$
                   $$=\left\{ { x }^{ 2 }+{ y }^{ 2 }=0 \right\} $$
    Hence, $$\bigcap _{ n=1 }^{ \infty  }{ { X }_{ n } } $$ is a singleton set.
  • Question 7
    1 / -0
    The modulus of $$\dfrac { 1-i }{ 3+i } +\dfrac { 4i }{ 5 } $$ is
    Solution
    Let $$z=\dfrac { 1-i }{ 3+i } +\dfrac { 4i }{ 5 } $$
             $$=\dfrac { 5-5i+12i-4 }{ 5\left( 3+i \right)  } =\dfrac { 1+7i }{ 5\left( 3+i \right)  } $$
             $$=\dfrac { \left( 1+7i \right) \left( 3-i \right)  }{ 5\left( 9+1 \right)  } $$
             $$=\dfrac { 10+20i }{ 50 } =\dfrac { 1+2i }{ 5 } $$
    $$\therefore \left| z \right| =\sqrt { { \left( \dfrac { 1 }{ 5 }  \right)  }^{ 2 }+{ \left( \dfrac { 2 }{ 5 }  \right)  }^{ 2 } } =\dfrac { 1 }{ 5 } \sqrt { 1+4 } =\dfrac { \sqrt { 5 }  }{ 5 } $$
  • Question 8
    1 / -0
    If $$A = (3 - 4i)$$ and $$B = (9 + ki)$$, where $$k$$ is a constant. 
    If $$AB - 15 = 60$$, then the value of $$k$$ is
    Solution

    Given, $$A=3-4i, B=9+ki, Ab-15=0$$

    $$\therefore AB= (3-4i)(9+ki)$$

    $$\therefore 27 + 3ki – 36i – 4ki^2-15=60$$

    $$\therefore -48+3ki-36i+4k=0$$

    Separate the real and imaginery part equal to zero, then we get the value of $$k$$,

    $$\therefore -48 + 4k = 0, 3k – 36 = 0$$

    $$\therefore -48 = -4k, 3k = 36$$

    $$\therefore k = 12, k = 12$$

    So, the value of $$ k$$ is $$12$$.

  • Question 9
    1 / -0
    The simplest form of $$\sqrt {-18} \times \sqrt {-50}$$ is
    Solution
    We know that $$i^2=-1$$
    So, $$\sqrt{18i^2}\times\sqrt{50i^2}$$
    $$=$$ $$i\sqrt{18}\times i\sqrt{50}$$
    $$=$$ $$i^2\sqrt{18\times50}$$
    $$=$$ $$-\sqrt{900}$$
    $$= - 30$$
  • Question 10
    1 / -0
    Simplify $$(2+8i)(1-4i)-(3-2i)(6+4i)$$
     (Note$$:i=\sqrt{-1}$$)
    Solution
    The value of $$\left ( 2+8i \right )\left ( 1-4i \right )-\left ( 3-2i \right )\left ( 6+4i \right )$$
    $$=$$ $$\left ( 2+8i-8i-32i^{2} \right )-\left ( 18-12i+12i-8i^{2} \right )$$
    $$=$$ $$2-32i^{2}-18+8i^{2}$$
    Put the given value of $$i=\sqrt{-1}$$, we get
    $$=$$ $$2-32(\sqrt{-1})^{2}-18+8(\sqrt{-1})^{2}$$
    $$=$$ $$2-32(-1)-18+8(-1)$$
    $$=$$ $$2+32-18-8$$
    $$=$$ $$34-26=8$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now