Self Studies

Number Theory Test 34

Result Self Studies

Number Theory Test 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    ............are the Pentium binary program that can be embedded in a web page. 
    Solution

    Active X controls  are the Pentium binary program that can be embedded in a web page.

    An ActiveX control is a component program object that can be re-used by many application programs within a computer or among computers in a network. The technology for creating ActiveX controls is part of Microsoft's overall ActiveX set of technologies, chief of which is the Component Object Model (COM).

    ActiveX controls can be downloaded as small programs or animations for Web pages, but they can also be used for any commonly-needed task by an application program in the latest Windows and Macintosh environments. In general, ActiveX controls replace the earlier OCX (Object Linking and Embedding custom controls). An ActiveX control is roughly equivalent in concept and implementation to the Java applet.

    An ActiveX control can be created in any programming language that recognizes Microsoft's Component Object Model. The distributed support for COM is called the Distributed Component Object Model (DCOM). In implementation, an ActiveX control is a dynamic link library (DLL) module. An ActiveX control runs in what is known as a container, an application program that uses the Component Object Model program interfaces.

  • Question 2
    1 / -0
    Which of the following is a prime number?
    Solution
    A prime number is a whole number greater than $$1$$ whose only factors are $$1$$ and itself.

    $$\Rightarrow$$ $$\sqrt{437} > 22$$

    $$\Rightarrow$$  All prime numbers less than $$22$$ are $$: 2, 3, 5, 7, 11, 13, 17, 19.$$

    $$\Rightarrow$$  $$161$$ is divisible by $$7$$, and $$221$$ is divisible by $$13$$.

    $$\Rightarrow$$  $$373$$ is not divisible by any of the above prime numbers.

    $$\therefore$$  $$373$$ is prime number
  • Question 3
    1 / -0
    If z satisfies $$\left| {z - 1} \right| < \left| {z + 3} \right|$$ then $$w = 2z + 3 - i$$ , ( where $$w = 2z + 3 - i$$ ) satisfies:
    Solution

  • Question 4
    1 / -0
    If $$z_1 \, z_2$$ be two distinct complex numbers and let z = (1 - t) $$z_1$$ + t$$z_2$$ for some real number t with 0 < t < 1. If arg $$(\omega)$$ denotes the principal argument of a non-zero complex number $$(\omega)$$, then
    Solution
    Given equation: $$z=(1-t)z_{1}+tz_{2}$$
    So we can write, $$|z-z_{1}|=t|z_{2}-z_{1}|=t|z_{1}-z_{2}|$$ -------(1)
    $$z-z_{2}=(1-t)(z_{1}-z_{2})$$
    $$|z-z_{2}|=(1-t)|(z_{1}-z_{2})|=(1-t)|z_{2}-z_{1}|$$ ------(2)
    From (1) and (2) we can say,
    $$|z-z_{1}|+|z-z_{2}|=|z_{1}-z_{2}|$$
  • Question 5
    1 / -0
    Simplify $$\left ( \dfrac{2i}{1 \, + \, i} \right )^2$$
    Solution

    We have,

    $$ {{\left( \dfrac{2i}{1+i} \right)}^{2}} $$

    $$ \Rightarrow \dfrac{4{{i}^{2}}}{1+{{i}^{2}}+2i} $$

    $$ \Rightarrow \dfrac{-4}{1-1+2i}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( \because {{i}^{2}}=-1 \right) $$

    $$ \Rightarrow \dfrac{-4}{2i} $$

    $$ \Rightarrow \dfrac{-2}{i} $$

    $$ \Rightarrow \dfrac{-2i}{{{i}^{2}}} $$

    $$ \Rightarrow \dfrac{-2i}{-1} $$

    $$ \Rightarrow 2i $$


    Hence, this is the answer.

  • Question 6
    1 / -0

    Let $$z$$ be a complex number such that $$\left| z+\dfrac { 1 }{ z }  \right| =2$$. 

    If $$\left| z \right| ={ r }_{ 1 }$$ and $$\left| \dfrac { 1 }{ z }  \right| =$$ $${r}_{2}$$ for $$\arg z=\dfrac { \pi  }{ 4 }$$ then 

    $$\left| { r }_{ 1 }-{ r }_{ 2 } \right| =$$

    Solution
    $$ \left| z+\dfrac { 1 }{ z }  \right| ^{ 2 }={ r }^{ 2 }+\dfrac { 1 }{ { r }^{ 2 } } +2r.\dfrac { 1 }{ r } \cos { \left( \theta +\theta  \right)  } =4$$
    or $${ r }^{ 2 }+\dfrac { 1 }{ { r }^{ 2 } } =4-2\cos { 2\theta  }$$
    $$\therefore\quad \left( r-\dfrac { 1 }{ r }  \right) ^{ 2 }=2\left( 1-\cos { 2\theta  }  \right) =4\sin { ^{ 2 }\theta  }$$
    $$\left| { r }_{ 1 }-{ r }_{ 2 } \right| =\left| r-\dfrac { 1 }{ r }  \right| =2\sin { \theta  } =2\sin { \dfrac { \pi  }{ 4 }  } =\sqrt { 2 }$$
  • Question 7
    1 / -0
    Real part of  $$\dfrac{(1 + i)^2}{3 - i} =$$
    Solution
    Given  $$\dfrac{(1 + i)^2}{3 - i}$$

    $$=\dfrac{2i}{3 - i}$$          [Since $$(i+1)^2=2i$$]

    $$=\dfrac{2i(3+i)}{3^2 - i^2}$$      [After rationalizing the denominator]

    $$=\dfrac{2i(3+i)}{10}$$

    $$=\dfrac{(3i-1)}{5}$$.

    Now real part of the given complex number is $$-\dfrac{1}{5}$$.
  • Question 8
    1 / -0
    If $$\dfrac{2z_1}{3z_2}$$ is a purely imaginary number,then $$\left|\dfrac{z_1-z_2}{z_1+z_2}\right|=$$
    Solution
    $$\dfrac{2z_1}{3z_2}=k'i$$
    $$\dfrac{z_1}{z_2}=\dfrac{3k'i}{2}$$
    $$\dfrac{z_1}{z_2}=ki$$ where $$\dfrac{3k'}{2}=k$$
    $$z_1=kiz_2$$
    Thus $$\left|\dfrac{z_1-z_2}{z_1+z_2}\right|=\left|\dfrac{kiz_2-z_2}{kiz_2+z_2}\right|$$

    $$=\left|\dfrac{z_2(ki-1)}{z_2(ki+1)}\right|$$

    $$=\dfrac{|ki-1|}{|ki+1|}$$

    $$=\dfrac{\sqrt{k^2+1^2}}{\sqrt{k^2+1^2}}=1$$
  • Question 9
    1 / -0
    Find the real number $$x$$ if $$(x-2i)(1+i)$$ is purely imaginary.
    Solution
    $$(x-2i)(1+i)$$
    $$ = x+ix -2i-2i^2$$
    $$= (x+2) -i(x-2)$$ is purely imaginary if (x+2)=0
    $$\therefore x=-2$$
  • Question 10
    1 / -0
    The value of $$\dfrac{1}{i} + \dfrac{1}{{{i^2}}} + \dfrac{1}{{{i^3}}} + ... + \dfrac{1}{{i^{102}}}$$ is equal to 
    Solution
    Let $$t=\cfrac { 1 }{ i } +\cfrac { 1 }{ { i }^{ 2 } } +.....+\cfrac { 1 }{ { i }^{ 102 } } $$
    $${ i }^{ 102 }t={ i }^{ 101 }+{ i }^{ 100 }+....+{ i }^{ 0 }$$
    Using sum of GP, $$a={ i }^{ 0 }=1$$
    $$r=i$$
    $$n={ 102  }$$
    $${ i }^{ 102 }t=\cfrac { 1\left( { i }^{ 102 }-1 \right)  }{ i-1 } =\cfrac { { i }^{ 2 }-1 }{ i-1 } =\cfrac { -2\left( i+1 \right)  }{ \left( i-1 \right) \left( i+1 \right)  } $$
    $${ i }^{ 102 }t=i+1\Rightarrow { i }^{ 2 }t=i+1$$
    $$t=-i-1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now