Self Studies

Number Theory Test 36

Result Self Studies

Number Theory Test 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$|Z|=2,|z_{2}|=3,|z_{3}=4|$$ and $$|z_{1}+z_{2}+z_{3}|=5$$ then $$|4z_{2}z_{3}+9z_{3}z_{1}+16z_{1}z_{2}|=$$
    Solution

    Solution:- (D) 120
    $$\left| {z}_{1} \right| = 2, \left| {z}_{2} \right| = 3, \left| {z}_{3} \right| = 4, \left| {z}_{1} + {z}_{2} + {z}_{3} \right| = 5$$
    $$\left| 4 {z}_{2} {z}_{3} + 9 {z}_{3} {z}_{1} + 16 {z}_{1} {z}_{2} \right| = \cfrac{\left| {z}_{1} \right| \left| {z}_{2} \right| \left| {z}_{3} \right|}{\left| {z}_{1} \right| \left| {z}_{2} \right| \left| {z}_{3} \right|} \left| 4 {z}_{2} {z}_{3} + 9 {z}_{3} {z}_{1} + 16 {z}_{1} {z}_{2} \right|$$
    $$= \left| {z}_{1} \right| \left| {z}_{2} \right| \left| {z}_{3} \right| \left| \cfrac{4}{{z}_{1}} + \cfrac{9}{{z}_{2}} + \cfrac{16}{{z}_{3}} \right|$$
    $$= \left( 2 \times 3 \times 4 \right) \left| \cfrac{4 \bar{{z}_{1}}}{{\left| {z}_{1} \right|}^{2}} + \cfrac{9 \bar{{z}_{2}}}{{\left| {z}_{2} \right|}^{2}} + \cfrac{16 \bar{{z}_{3}}}{{\left| {z}_{3} \right|}^{2}}\right|$$
    $$= 24 \left| \cfrac{4 \bar{{z}_{1}}}{{2}^{2}} + \cfrac{9 \bar{{z}_{2}}}{{3}^{2}} + \cfrac{16 \bar{{z}_{3}}}{{4}^{2}} \right|$$
    $$= 24 \left| \cfrac{4 \bar{{z}_{1}}}{4} + \cfrac{9 \bar{{z}_{2}}}{9} + \cfrac{16 \bar{{z}_{3}}}{16} \right|$$
    $$= 24 \left| \bar{{z}_{1}} + \bar{{z}_{2}} + \bar{{z}_{3}} \right|$$
    $$= 24 \left| \overline{{z}_{1} + {z}_{2} + {z}_{3}} \right|$$
    $$= 24 \times 5$$
    $$= 120$$
    Hence, $$\left| 4 {z}_{2} {z}_{3} + 9 {z}_{3} {z}_{1} + 16 {z}_{1} {z}_{2} \right| = 120$$.
  • Question 2
    1 / -0
    If $$\dfrac{x - 3}{3 + i} + \dfrac{y - 3}{3 - i} = i $$ where $$x , y \in R$$ then
    Solution
    $$\dfrac{x-3}{3+i}+\dfrac{y-3}{3-i}=i$$
    $$\dfrac{(x-3)(3-i)}{10}+\dfrac{(y-3)(3+i)}{10}=i$$
    $$3(x-3)+3(y-3)-i((x-3+(3-y))=10i$$
    $$3(x+y-6)-i(x-y)=10i$$
    compare real and imaginary point
    $$x+y=6$$
    $$y-x=10$$
    $$\Rightarrow y=8, x=-2$$
  • Question 3
    1 / -0
    The locus of $$z$$ such that $$\left| {\dfrac{{z + i}}{{z - 1}}} \right| = 2$$
    Solution
    $$\left|\dfrac{z+i}{z-1}\right|=2$$

    Put, $$z = x + iy$$

    $$\therefore\,\left|\dfrac{x + iy+i}{x + iy-1}\right|=2$$

    $$\Rightarrow\,\left|\dfrac{x + i\left(y+1\right)}{\left(x-1\right)+iy}\right|=2$$

    $$\Rightarrow\,\left|x + i\left(y+1\right)\right|=2\left|\left(x-1\right)+iy\right|$$

    $$\Rightarrow\,\sqrt{{x}^{2}+{\left(y+1\right)}^{2}}=2\sqrt{{\left(x-1\right)}^{2}+{y}^{2}}$$

    Squaring both sides, we get
    $$\Rightarrow\,{x}^{2}+{\left(y+1\right)}^{2}=4{\left(x-1\right)}^{2}+4{y}^{2}$$

    $$\Rightarrow\,{x}^{2}-{\left(2x-2\right)}^{2}={\left(2y\right)}^{2}-{\left(y+1\right)}^{2}$$

    $$\Rightarrow\,\left(x-2x+2\right)\left(x+2x-2\right)=\left(2y-y-1\right)\left(2y+y+1\right)$$

    $$\Rightarrow\,\left(-x+2\right)\left(3x-2\right)=\left(y-1\right)\left(3y+1\right)$$
    $$\Rightarrow\,-3{x}^{2}+2x+6x-4=3{y}^{2}+y-3y-1$$

    $$\Rightarrow\,-3{x}^{2}+8x-4=3{y}^{2}-2y-1$$

    $$\Rightarrow\,-3{x}^{2}+8x-4-3{y}^{2}+2y+1=0$$

    $$\Rightarrow\,3{x}^{2}+3{y}^{2}-8x-2y+3=0$$

    $$\Rightarrow\,{x}^{2}+{y}^{2}-\dfrac{8}{3}x-\dfrac{2}{3}y+1=0$$ is of the form $${x}^{2}+{y}^{2}+2gx+2fy+c=0$$

    where $$g=\dfrac{4}{3},\,f=\dfrac{1}{3}$$ and $$c=1$$

    Radius$$=r=\sqrt{{\left(\dfrac{4}{3}\right)}^{2}+{\left(\dfrac{1}{3}\right)}^{2}+1}=\sqrt{\dfrac{16}{9}+\dfrac{1}{9}-1}=\sqrt{\dfrac{17-9}{9}}=\dfrac{\sqrt{8}}{3}=\dfrac{2\sqrt{2}}{3}$$

    The locus of $$z$$ is a circle with radius $$\dfrac{2\sqrt{2}}{3}$$
  • Question 4
    1 / -0
    If $$\left| {z - 1} \right| = 2$$, then the value of $$z\overline z  - z - \overline z $$ is equal to: 
    Solution
    Given $$|z-1|=2$$
    we know that $$|z|^{2}=z.\bar{z}$$
    so taking square root on both side.
    $$|z-1|^{2}=4$$
    $$(z-1)(\bar{z-1})=4$$
    $$(z-1)(\bar{z}-1)=4$$
    $$z.\bar{z}-\bar{z}-z+1=4$$
    $$z.\bar{z}-z-\bar{z}=3$$
    so answer is 3.
  • Question 5
    1 / -0
    If z is a complex number such that $$\left|\dfrac{z-3i}{z+3i}\right|=1$$ then z lies on?
    Solution
    Given $$\left| \cfrac { z-3i }{ z+3i }  \right| =1$$
    $$ \Rightarrow \left| \cfrac { z-3i }{ z+3i }  \right| =1$$
    $$\Rightarrow z$$ is equidistant  from $$(0,3)$$ & $$(0,-3)$$
    It lies on real axis.
  • Question 6
    1 / -0
    $$\left(\dfrac{1 + i}{1 - i}\right)^4 + \left(\dfrac{1 - i}{1 + i}\right)^4 = $$ 
    Solution
    $$\left( \dfrac{1+i}{1-i} \right)^{4}+ \left( \dfrac{1-i}{1+i} \right)^{4}$$
    $$= \left( \dfrac{(1+i)^{2}}{1-i^{2}} \right)^{4}+ \left( \dfrac{(1-i)^{2}}{1-i^{2}} \right)^{4}$$
    $$=\dfrac{1}{2^{4}} (1+i^{2} +2 i)^{4}+ \dfrac{1}{2^{4}} (1+i^{2}-2i)^{4}$$
    $$=\dfrac{1}{2^{4}} (1-1+ 2i)^{4}+ \dfrac{1}{2^{4}} (1-1-2i)^{4}$$
    $$=\dfrac{2^{4}}{2^{4}} (i^{4})+ \dfrac{2^{4}}{2^{4}} (i)^{4}$$
    $$= 1+1 =2$$
  • Question 7
    1 / -0
    If $$|z_1+z_2|=|z_1|+|z_2|$$ where $$z_1$$ and $$z_2$$ are different non - zero complex number, then ?
    Solution
    $$let\quad { z }_{ 1 }=a+ib\quad \quad and\quad \quad { z }_{ 2 }=c+id\\ \Rightarrow \quad \left| \quad { z }_{ 1 }+\quad { z }_{ 2 } \right| \quad \quad \quad \quad =\quad \quad \quad \left| \quad { z }_{ 1 } \right| +\left| \quad { z }_{ 2 } \right| \\ \Rightarrow \quad \quad \left| a+ib+c+id \right| \quad =\quad \quad \left| a+ib \right| +\left| c+id \right| \\ \Rightarrow \left| a+c+i\left( b+d \right)  \right| \quad \quad \quad =\quad \quad \quad \left| a+ib \right| +\left| c+id \right| \\ \Rightarrow \sqrt { \left( a+c \right) ^{ 2 }+\left( b+d \right) ^{ 2 } } =\quad \quad \sqrt { { a }^{ 2 }+{ b }^{ 2 } } +\sqrt { { c }^{ 2 }+d^{ 2 } } \\ \quad \quad \quad \quad squaring\quad both\quad sides\\ \Rightarrow \left( a+c \right) ^{ 2 }+\left( b+d \right) ^{ 2 }={ a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 }+d^{ 2 }+2\sqrt { { a }^{ 2 }+{ b }^{ 2 } } .\sqrt { { c }^{ 2 }+d^{ 2 } } \\ \Rightarrow 2ac+2bd\quad \quad =\quad \quad 2\sqrt { { a }^{ 2 }+{ b }^{ 2 } } .\sqrt { { c }^{ 2 }+d^{ 2 } } \\ \Rightarrow ac+bd\quad \quad =\quad \quad \sqrt { { a }^{ 2 }+{ b }^{ 2 } } .\sqrt { { c }^{ 2 }+d^{ 2 } } \\ \quad \quad \quad again\quad squaring\quad both\quad sides\\ \Rightarrow { \left( ac \right)  }^{ 2 }+{ \left( bd \right)  }^{ 2 }+2abcd\quad =\quad \left( { a }^{ 2 }+{ b }^{ 2 } \right) \left( { c }^{ 2 }+d^{ 2 } \right) \\ \Rightarrow { \left( ac \right)  }^{ 2 }+{ \left( bd \right)  }^{ 2 }+2abcd\quad =\quad { \left( ac \right)  }^{ 2 }+{ \left( ad \right)  }^{ 2 }+{ \left( bc \right)  }^{ 2 }+{ \left( bd \right)  }^{ 2 }\\ \Rightarrow { \left( ad \right)  }^{ 2 }+{ \left( bc \right)  }^{ 2 }-2abcd\quad =\quad 0\\ \Rightarrow \left( ad-bc \right) ^{ 2 }\quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad 0\\ \Rightarrow ad-bc\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad 0\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad ad\quad \quad =\quad \quad \quad bc\quad \quad \quad \quad \longrightarrow \left( 1 \right) \\ Now\quad \quad \dfrac { { z }_{ 1 } }{ { z }_{ 2 } } \quad =\quad \dfrac { a+ib }{ c+id } \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad \dfrac { \left( a+ib \right) \left( c-id \right)  }{ \left( c+id \right) \left( c-id \right)  } \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad \dfrac { ac-iad+ibc-{ i }^{ 2 }bd }{ { c }^{ 2 }+{ d }^{ 2 } } \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad \dfrac { ac+bd+i\left( bc-ad \right)  }{ { c }^{ 2 }+{ d }^{ 2 } } \quad \quad \quad \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad \dfrac { ac+bd }{ { c }^{ 2 }+{ d }^{ 2 } } \quad +\quad 0\quad \quad \quad using\quad equation\quad \left( 1 \right) \\ Imaginary\quad part\quad is\quad zero\quad as\quad there\quad is\quad only\quad real\quad part\\ \therefore \quad Im\left( \frac { { z }_{ 1 } }{ { z }_{ 2 } }  \right) =\quad 0$$
  • Question 8
    1 / -0
    The complex number $$z$$ satisfies $$z+|z|=2+8i$$. The value of $$|z|$$ is
    Solution
    $$Assume,z=a+ib,where \ i=\sqrt { -1 } $$

    $$Then,z+|z|=a+ib+\sqrt { { a }^{ 2 }+{ b }^{ 2 } } =2+8i$$

    $$Thus,b=8.$$

    $$And\quad a+\sqrt { { a }^{ 2 }+64 } =2$$

    $${ a }^{ 2 }+64={ (2−a) }^{ 2 }$$

    $${ a }^{ 2 }+64=4−4a+{ a }^{ 2 }$$

    $$a=−15$$

    $$Thus\quad z=−15+8i$$

    $$Thus|z|=\sqrt { { (-15) }^{ 2 }+{ 8 }^{ 2 } } =17$$
  • Question 9
    1 / -0
    The number of prime numbers between $$1 \ and \ 10$$ is
    Solution
    The prime numbers between $$1$$ to$$ 10$$ is, 
    $$2,3,5,7,$$ 
    There are four prime numbers in between $$1 $$ to $$10$$.
  • Question 10
    1 / -0
    if $$z_1=3+4i$$ and $$Im(z_1z_2)=0$$ Find $$z_2$$ 
    Solution
    Let $$z_2=a+ib$$

    $$z_1z_2=(3+4i)(a+ib)$$

    $$=(3a-4b)+i(4a+3b)$$

    $$Im(z_1z_2)=0$$

    $$\Rightarrow 4a+3b=0$$

    $$\Rightarrow 4a=-3b$$

    $$\dfrac ab=\dfrac 3{-4}$$

    $$\implies a=3$$

    $$b=-4$$

    So $$z_2=3-4i$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now