Self Studies

Number Theory T...

TIME LEFT -
  • Question 1
    1 / -0

    If $$|Z|=2,|z_{2}|=3,|z_{3}=4|$$ and $$|z_{1}+z_{2}+z_{3}|=5$$ then $$|4z_{2}z_{3}+9z_{3}z_{1}+16z_{1}z_{2}|=$$

  • Question 2
    1 / -0

    If $$\dfrac{x - 3}{3 + i} + \dfrac{y - 3}{3 - i} = i $$ where $$x , y \in R$$ then

  • Question 3
    1 / -0

    The locus of $$z$$ such that $$\left| {\dfrac{{z + i}}{{z - 1}}} \right| = 2$$

  • Question 4
    1 / -0

    If $$\left| {z - 1} \right| = 2$$, then the value of $$z\overline z  - z - \overline z $$ is equal to: 

  • Question 5
    1 / -0

    If z is a complex number such that $$\left|\dfrac{z-3i}{z+3i}\right|=1$$ then z lies on?

  • Question 6
    1 / -0

    $$\left(\dfrac{1 + i}{1 - i}\right)^4 + \left(\dfrac{1 - i}{1 + i}\right)^4 = $$ 

  • Question 7
    1 / -0

    If $$|z_1+z_2|=|z_1|+|z_2|$$ where $$z_1$$ and $$z_2$$ are different non - zero complex number, then ?

  • Question 8
    1 / -0

    The complex number $$z$$ satisfies $$z+|z|=2+8i$$. The value of $$|z|$$ is

  • Question 9
    1 / -0

    The number of prime numbers between $$1 \ and \ 10$$ is

  • Question 10
    1 / -0

    if $$z_1=3+4i$$ and $$Im(z_1z_2)=0$$ Find $$z_2$$ 

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now