Self Studies

Number Theory Test 38

Result Self Studies

Number Theory Test 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$z_{1},\ z_{2}$$ are two complex numbers such that $$arg\left( { z }_{ 1 }+{ z }_{ 2 } \right) =0$$ and $$Im\left( { z }_{ 1 }{ z }_{ 2 } \right) =0$$, then
    Solution
    Let the complex numbers be,

    $$z_1=a+ib,z_2=x+iy$$

    $$arg(z_1+z_2)=arg(a+x+i(b+y))=0$$

    $$\tan^{-1}\left ( \dfrac{b+y}{a+x} \right )=0$$

    $$ \dfrac{b+y}{a+x}=0$$

    $$b+y=0$$.....(1)

    $$Im(z_1z_2)=Im(ax-by+i(ay+bx))=0$$

    $$(ay+bx)=0$$

    from (1),

    $$ay=xy\Rightarrow a=x$$

    $$\Rightarrow b=-y,a=x$$

    $$\therefore z_1=x-iy,z_2=x+iy$$

    Hence proved, $$z_1=\bar{z}_2$$
  • Question 2
    1 / -0
    $$\sqrt{-2}\sqrt{-3}=$$
    Solution

    $${\textbf{Step  - 1: Writing the product in terms of i (iota)}}$$

                      $${\text{We know that, }}\sqrt {{\text{ - 1}}} {\text{  =  i and }}\sqrt {{\text{ab}}} {\text{  =  }}\sqrt {\text{a}} \sqrt {\text{b}} $$

                      $$\therefore {\text{ }}\sqrt {{\text{ - 2}}} {\text{  =  }}\sqrt {{\text{ - 1}}} \sqrt {\text{2}} {\text{  =  i}}\sqrt 2 $$     $$\quad \quad \quad \text{.....eqn(i)}$$

                      $${\text{and }}\sqrt {{\text{ - 3}}} {\text{  =  }}\sqrt {{\text{ - 1}}} \sqrt {\text{3}} {\text{  =  i}}\sqrt {\text{3}} $$   $$\quad \quad \quad \text{.....eqn(ii)}$$

    $${\textbf{Step  - 2: Multiplying the terms}}$$

                      $$\sqrt {{\text{ - 2}}} \sqrt {{\text{ - 3}}} {\text{  =  }}\left( {{\text{i}}\sqrt {\text{2}} } \right)\left( {{\text{i}}\sqrt {\text{3}} } \right)$$   $$\quad \quad \quad \textbf{[From eqn(i) and eqn(ii)]}$$

                      $$ \Rightarrow {\text{ }}\sqrt {{\text{ - 2}}} \sqrt {{\text{ - 3}}} {\text{  =  }}{{\text{i}}^{\text{2}}}\sqrt {{\text{3}} \times 2} $$

                      $$ \Rightarrow {\text{ }}\sqrt {{\text{ - 2}}} \sqrt {{\text{ - 3}}} {\text{  =   - }}\sqrt {\text{6}} {\quad \quad \quad \quad \quad \quad \textbf{  [}}\because {\text{ }}{{\textbf{i}}^{\textbf{2}}}{\textbf{  =   - 1]}}$$


    $$\mathbf{{\text{Thus, the value of the product }}\sqrt {{\text{ - 2}}} \sqrt {{\text{ - 3}}} {\text{ is  -}}\sqrt {\text{6}} }$$

  • Question 3
    1 / -0
    If $$\left| z \right| = 1$$, then $$\left| z - 1 \right|$$ is
    Solution
    Given $$|z|=1\ \Rightarrow \ z=1\ e^{i\theta} $$ where $$\theta =\arg (z)$$

    $$|z-1|=|e^{i\theta}-1|=|(\cos \theta -1)+i\sin \theta|$$

    $$=\sqrt {(i\cos \theta -1)^2+\sin^2 \theta}$$

    $$=\sqrt {2(1-\cos \theta)}$$

    $$=2\sin \dfrac {\theta}{2}$$

    For $$\theta \ge 0,\ \sin \theta \le \theta \ \Rightarrow \ |z-1| =2\sin \dfrac {\theta}{2}\le 2\dfrac {\theta }{2}$$

    Hence, $$|z-1| < |\arg (z)| $$

    $$\therefore \ $$ Option $$A$$ is correct
  • Question 4
    1 / -0
    If z is a complex number such that $$|z|\ge 2$$, then the minimumm value of $$\left|z+\dfrac{1}{2}\right|$$:
    Solution

  • Question 5
    1 / -0
    If $$|z|=1$$ and $$|\omega -1| =1$$ where $$z, \omega \in C$$, then the largest set of values of $$|2z - 1|^2 + | 2\omega -1|^2$$ equals  
    Solution
    $$|z|=1$$ implies that Z in Q circle with radius with a center (0,0)  in the complex plane.
    $$|w-1|=1$$ implies that it in a circle with the radius unit, center $$(1,0)$$ in the complex plane.
    $$|2z-1|^2+|2w-1|^2=4\left(\left|z-\dfrac{1}{2}\right|^2+\left|w-\dfrac{1}{2}\right|^2\right)$$
    It means it is the range of $$4 $$ times the sum of the square of the distance of points from $$(0.5,)$$ from the respective circles of low of the z,w
    The point $$(0.5,0)$$ in symmetric with the both circles on the center of a radius on the X-axis so both of them get equal ranges so it simply becomes $$8$$ times of annual circle range.
    The min or max possible values of the distance from the point become the distance b/w the point and the vertices of the diameter on choice it lies that is
    $$\rightarrow \dfrac{1}{2},\dfrac{3}{2}$$
    $$=8\times \left[\left(\dfrac{1}{2}\right)^2,\left(\dfrac{3}{2}\right)^2\right]=[2,18]$$

  • Question 6
    1 / -0
    If $$Z$$ is a complex number such that $$|z| \ge 2$$,
    then the minimum value of $$\left|z + \dfrac{1}{2}\right|$$
    Solution
    R.E.F image 

    graph of $$|z|\geq 2 $$

    everything outside the 

    circle and on the circle is $$|z|\geq 2 $$

    Minimum distance bet$$^{n}$$ $$ |z+1/2| $$

    $$ \Rightarrow $$ distance $$ AB $$

    By using distance formula

    $$ \Rightarrow \dfrac 32 $$ 

    $$ \therefore $$ Option B is correct 

  • Question 7
    1 / -0
    If $$\left| {\dfrac{{{z_1}}}{{{z_2}}}} \right| = 1$$ and $$\arg \left( {{z_1}{z_2}} \right) = 0$$ , then
    Solution
    If $$\left|\dfrac{z_1}{z_2}\right|=1$$ and $$arg(z_1z_2)=0$$

    $$z_1=x_1+iy, z_2=x_2+iy_2$$

    then if $$\left|\dfrac{z_1}{z_2}\right|=1$$

    $$\sqrt{x_1^2+y_1^2}=\sqrt{x_2^2+y_2^2}$$

    $$x_1^2+y_1^2=x_2^2+y_2^2$$

    $$arg(z_1z_2)=arg(x_1x_2-y_1y_2+i(x_1y_2+y_1x_2))=0$$

    $$\dfrac{x_1y_2+y_1x_2}{x_1x_2-y_1y_2}=0$$

    $$x_1y_2=-y_1x_2$$

    $$\dfrac{x_1}{x_2}=\dfrac{-y_1}{y_2}$$

    $$\dfrac{x_1}{y_2}=\dfrac{-x_2}{y_2}$$

    Both $$z_1z_2$$ make $$180^o$$ angle

    So $$z_1+z_2=0$$

    if both have an equal modulus

    $$z_1+z_2=0$$

    $$z_1=-z_2$$

    $$D$$ is correct
  • Question 8
    1 / -0
    $$I_m$$ $$\left( {\sqrt {a + i\sqrt {{a^4} + {a^2} + 1} } } \right) = $$
    Solution
    Let $$z=\sqrt{a+i\sqrt{a^4+a^2+1}}$$
    $$x+iy=\sqrt{a+i\sqrt{a^4+a^2+1}}$$
    Find y which $$I_m(z)$$
    Squaring both sides
    $$x^2-y^2+2ixy=a+i\sqrt{a^4+a^2+1}$$
    $$x^2-y^2=a$$ ……..$$(1)$$
    $$2xy=\sqrt{a^4+a^2+1}$$
    $$2xy=\sqrt{(a^2+a+1)(a^2+1-a)}$$
    $$xy=\sqrt{\left(\dfrac{a^2+a+1}{2}\right)\left(\dfrac{a^2-a+1}{2}\right)}$$ ……$$(2)$$
    From $$(1)$$ & $$(2)$$ we get
    $$x=\sqrt{\dfrac{a^2+a+1}{2}}, y=\sqrt{\dfrac{a^2-a+1}{2}}$$
    $$I_m(z)=\sqrt{\dfrac{a^2-a+1}{2}}$$
    D is correct.
  • Question 9
    1 / -0
    If for complex number $$z_{1}and   z_{2}arg(z_{1})-arg(z_{2})=0then \mid z_{ 1}-z_{2}\mid $$ is equal to:
  • Question 10
    1 / -0
    Argument and modules of $$[\dfrac{1+i}{1-i}]^{2\pi i}$$ are respectively................. 
    Solution
    $$ (\dfrac{1+i}{1-i})^{2\pi i}$$
    let $$ 2 = (\dfrac{1+i}{1-i})^{2\pi i}$$
    Rationalizing the above, we get
    $$ = \dfrac{(1+i)^2}{(1)^2-(i)^2} = \dfrac{1+(i)^2+2i}{1-(-1)} = \dfrac{1-1+2i}{1+1} = \dfrac{2i}{2} = i $$
    $$ z = 0+i =  1$$
    here x =0 ,y = 1 
    modules of $$ 2 = \sqrt{x^2 + y^2 } = \sqrt{0+1^2} = 1 $$
    modules of z = 1 
    $$ z =i , $$ As per the question, $$(i)^{2\pi i }$$
    & $$ z = r(cos\theta + sin\theta) $$
    $$ \Rightarrow (r(cos\theta + 1sin \theta))^{2\pi i}$$
    $$ = [r(cos(2\pi i))+\theta +i sin (2\pi i )\theta ]$$
    $$ (i)^{2\pi i} = (r)^{2\pi i}$$
    $$ \Rightarrow r = i $$
    $$ r^2 cos^2 \theta = 0 ; r^2 sin^2 \theta = 1$$
    $$ tan \theta  = \dfrac{\pi}{2}$$
    $$ 0+1 = r^2 cos^2\theta +r sin^2 \theta $$
    $$ 1 = r^2(cos^2 \theta + sin^2 \theta)$$
    $$ 1 = r^2 \Rightarrow r = 1 $$
    argument of$$ z = \dfrac{\pi}{2}$$
    Option (D) is correct.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now