Self Studies

Number Theory T...

TIME LEFT -
  • Question 1
    1 / -0

    If $$z_{1},\ z_{2}$$ are two complex numbers such that $$arg\left( { z }_{ 1 }+{ z }_{ 2 } \right) =0$$ and $$Im\left( { z }_{ 1 }{ z }_{ 2 } \right) =0$$, then

  • Question 2
    1 / -0

    $$\sqrt{-2}\sqrt{-3}=$$

  • Question 3
    1 / -0

    If $$\left| z \right| = 1$$, then $$\left| z - 1 \right|$$ is

  • Question 4
    1 / -0

    If z is a complex number such that $$|z|\ge 2$$, then the minimumm value of $$\left|z+\dfrac{1}{2}\right|$$:

  • Question 5
    1 / -0

    If $$|z|=1$$ and $$|\omega -1| =1$$ where $$z, \omega \in C$$, then the largest set of values of $$|2z - 1|^2 + | 2\omega -1|^2$$ equals  

  • Question 6
    1 / -0

    If $$Z$$ is a complex number such that $$|z| \ge 2$$,
    then the minimum value of $$\left|z + \dfrac{1}{2}\right|$$

  • Question 7
    1 / -0

    If $$\left| {\dfrac{{{z_1}}}{{{z_2}}}} \right| = 1$$ and $$\arg \left( {{z_1}{z_2}} \right) = 0$$ , then

  • Question 8
    1 / -0

    $$I_m$$ $$\left( {\sqrt {a + i\sqrt {{a^4} + {a^2} + 1} } } \right) = $$

  • Question 9
    1 / -0

    If for complex number $$z_{1}and   z_{2}arg(z_{1})-arg(z_{2})=0then \mid z_{ 1}-z_{2}\mid $$ is equal to:

  • Question 10
    1 / -0

    Argument and modules of $$[\dfrac{1+i}{1-i}]^{2\pi i}$$ are respectively................. 

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now