Self Studies

Number Theory Test 52

Result Self Studies

Number Theory Test 52
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$z_1, z_2, z_3$$ are three points lying on the circle |z| =2, then the minimum value of $$|z_1 + z_2|^2 + | z_2 + z_3|^2 + | z_3 + z_1|^2$$ is equal to
    Solution

  • Question 2
    1 / -0
    The modulus of $$\overline { 6+{ i }^{ 3 } } +\overline { 6+{ i } }+\overline { 6+{ i }^{ 2 } } $$ is
    Solution

  • Question 3
    1 / -0
    If the expression $${(1+ir)}^{3}$$ is of the form of $$s(1+i)$$ for some real $$s$$ where $$r$$ is also real and $$i=\sqrt{-1}$$, then the value of $$r$$ can be
    Solution

  • Question 4
    1 / -0
    If $$\tan^{-1}(\alpha+ i\beta) = x+iy,$$ then $$x$$ is equal to
    Solution

  • Question 5
    1 / -0
    If $$(\dfrac{3-z_{1}}{2-z_{1}})(\dfrac{2-z_{2}}{3-z_{2}})=k$$, then point $$A(z_{1}, z_{2}),  C(3, 0)$$ and $$D(2, 0)$$ (taken in clockwise sense ) will
    Solution

  • Question 6
    1 / -0
    If $$\left| z \right| =1$$ and $$\left| \omega -1 \right| =1$$ where $$z,\omega \in C$$ then the largest set of values of $${ \left| 2z-1 \right|  }^{ 2 }+{ \left| 2\omega -1 \right|  }^{ 2 }$$ equals 
    Solution

  • Question 7
    1 / -0
    If $$\dfrac {3+2i \sin x}{1-2i \sin x}$$ is purely imaginary then $$x=$$ ?
    Solution

    A complex number is said to be purely imaginary if $$z+\overline { z } =0$$

     

    If $$z=\dfrac { 3+2isinθ }{ 1−2isinθ } $$

     

    then $$\overline { z } =\overline { \dfrac { 3+2isinθ }{ 1−2isinθ }  } =\dfrac { 3-2isinθ }{ 1+2isinθ } $$

     

    $$z+\overline { z } =\dfrac { 3+2isinθ }{ 1−2isinθ } +\dfrac { 3-2isinθ }{ 1+2isinθ } $$

     

    So,$$\dfrac { 3+2isinθ }{ 1−2isinθ } +\dfrac { 3−2isinθ }{ 1+2isinθ } =0$$

     

    $$\dfrac { (3+2isinθ)(1+2isinθ)+(3−2isinθ)(1−2isinθ) }{ (1−2isinθ)(1+2isinθ) } =0$$

     

    $$3+6isinθ+2isinθ−4{ sin }^{ 2 }θ+3−6isinθ−2isinθ−4{ sin }^{ 2 }θ=0$$

     

    $$6−{ 8sin }^{ 2 }θ=0$$

     

    $${ sin }^{ 2 }θ=\dfrac { 3 }{ 4 } $$

     

    $$sinθ=\dfrac { \sqrt { 3 }  }{ 2 } =sin\dfrac { \pi  }{ 3 } $$

     

    $$θ=nπ+{ (−1) }^{ n }\left( \dfrac { \pi  }{ 3 }  \right) $$

     

    $$sinθ=\dfrac { \sqrt { 3 }  }{ 2 } =sin−\dfrac { \pi  }{ 3 } $$

     

    $$θ=nπ+{ (−1) }^{ n }\left( \dfrac { -\pi  }{ 3 }  \right) =nπ+{ (−1) }^{ n+1 }\left( \dfrac { \pi  }{ 3 }  \right) $$

  • Question 8
    1 / -0
    If $$\alpha$$ and $$\beta$$ are different complex number with $$|\beta|=1$$, then $$\left |\dfrac {\beta-\alpha}{1-\overline {\alpha }\beta}\right|$$ is equal to
  • Question 9
    1 / -0
    Which of the following pairs are twin primes?
    Solution

    Twin primes are prime numbers that differ by$$2$$.

    For example 11 and 13 are twin primes.

    In a sense they are “right next to each other” in the sense that(with the exception of the prime number $$2)$$, 

    two primes can’t be closer together.

    $$21$$ is not prime though. so $$19$$ and $$21$$ are not twin primes.

    $$19$$ and $$17$$ are twin primes, but the next prime after $$19$$ is $$23$$ which is more than $$2$$ greater.

  • Question 10
    1 / -0
    If $$z^4+1=\sqrt{3}$$i then?
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now