Self Studies

Number Theory T...

TIME LEFT -
  • Question 1
    1 / -0

    If $$z_1, z_2, z_3$$ are three points lying on the circle |z| =2, then the minimum value of $$|z_1 + z_2|^2 + | z_2 + z_3|^2 + | z_3 + z_1|^2$$ is equal to

  • Question 2
    1 / -0

    The modulus of $$\overline { 6+{ i }^{ 3 } } +\overline { 6+{ i } }+\overline { 6+{ i }^{ 2 } } $$ is

  • Question 3
    1 / -0

    If the expression $${(1+ir)}^{3}$$ is of the form of $$s(1+i)$$ for some real $$s$$ where $$r$$ is also real and $$i=\sqrt{-1}$$, then the value of $$r$$ can be

  • Question 4
    1 / -0

    If $$\tan^{-1}(\alpha+ i\beta) = x+iy,$$ then $$x$$ is equal to

  • Question 5
    1 / -0

    If $$(\dfrac{3-z_{1}}{2-z_{1}})(\dfrac{2-z_{2}}{3-z_{2}})=k$$, then point $$A(z_{1}, z_{2}),  C(3, 0)$$ and $$D(2, 0)$$ (taken in clockwise sense ) will

  • Question 6
    1 / -0

    If $$\left| z \right| =1$$ and $$\left| \omega -1 \right| =1$$ where $$z,\omega \in C$$ then the largest set of values of $${ \left| 2z-1 \right|  }^{ 2 }+{ \left| 2\omega -1 \right|  }^{ 2 }$$ equals 

  • Question 7
    1 / -0

    If $$\dfrac {3+2i \sin x}{1-2i \sin x}$$ is purely imaginary then $$x=$$ ?

  • Question 8
    1 / -0

    If $$\alpha$$ and $$\beta$$ are different complex number with $$|\beta|=1$$, then $$\left |\dfrac {\beta-\alpha}{1-\overline {\alpha }\beta}\right|$$ is equal to

  • Question 9
    1 / -0

    Which of the following pairs are twin primes?

  • Question 10
    1 / -0

    If $$z^4+1=\sqrt{3}$$i then?

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now