Self Studies

Functions Test 20

Result Self Studies

Functions Test 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The domain of the function, $$f(x) = \displaystyle \dfrac {1}{\sqrt{[x]^2-[x]-6}}$$  is
    Solution
    Given : $$f(x) = \displaystyle \frac {1}{\sqrt{[x]^2-[x]-6}}$$

    $$f(x)$$ is real if $${\sqrt{[x]^2-[x]-6}}\in R$$ 

    i.e.
     $$[x]^{ 2 }-[x]-6>0$$
    $$\implies [x]^{ 2 }-3[x]+2[x]-6>0$$
    $$\implies [x]([x]-3)+2([x]-3)>0$$
    $$\implies ([x]-3)([x]+2)>0$$
    $$ \implies \left[ x \right] <-2 $$ and $$\left[ x \right] >3$$

    Therefore, $$x \in (-\infty , -3] \cup [4, \infty )$$
  • Question 2
    1 / -0
    The domain of the function $$\ln (x-1)$$ is.
    Solution
    $$\log(x-1)$$
    where $$ (x-1)>0$$
    $$x>1$$
    Domain of $$\log(x-1)$$  $$=(1,\infty)$$
  • Question 3
    1 / -0
    The domain of the function, $$f(x) = \log_{10} (\sqrt{x-4}+\sqrt {6-x})$$ is
    Solution
    Given,
    $$f(x) = \log_{10} (\sqrt{x-4}+\sqrt {6-x})$$

    For given function to be defined,
    $$\Rightarrow x-4 \geq  0 \,$$ and $$\, 6-x \geq  0 \Rightarrow  x \geq  4 \, $$and $$ \,x \leq  6$$

    $$\therefore $$  Domain of $$(x) = [4, 6]$$
  • Question 4
    1 / -0
    If $$f : [0, \Pi ] \rightarrow  [-1, 1]$$, f(x) = cosx, then f is.
    Solution
    f takes all values from $$[-1,1]$$ while travelling from $$[0,\pi]$$. None of the values are repeated either. 

    Hence it is one-one and onto.
  • Question 5
    1 / -0
    If $$f(x) = \left\{\begin{matrix} 1&x \in Q \\ 0 &x \notin  Q\end{matrix}\right.$$ then $$fof(\sqrt 3 )$$ is equal to
    Solution
    We know $$\sqrt{3}$$ is an irrational number

    Thus $$f(\sqrt{3}) =0$$ and $$0$$ is a rational number

    Hence $$fof(\sqrt 3 )= f(0) = 1$$
  • Question 6
    1 / -0
    The domain of the function $$\log \displaystyle \sqrt {\frac {3-x}{2}}$$ is.
    Solution
    We have $$f(x) = \log \sqrt {\dfrac {3-x}{2}}$$

    $$\because     \dfrac {3-x}{2}>0$$

    $$\Rightarrow 3 -x > 0$$

    $$\Rightarrow x < 3 $$

    $$\Rightarrow x \in (-\infty , 3)$$

    $$\therefore $$   domain of $$f(x)$$ is $$(-\infty , 3)$$.
  • Question 7
    1 / -0
    The domain of the function $$f(x) = \displaystyle \cfrac { 1 }{ \sqrt { x-\left[ x \right]  }  } $$
    Solution
    We have $$f(x) =\dfrac {1} {\sqrt{x-|x|}}$$

    $$\Rightarrow   x -[x] > 0$$

    $$\Rightarrow   x > [x]$$ is defined only when $$x\notin   Z.$$

    Domain of $$f(x)$$ is $$R-Z$$
  • Question 8
    1 / -0
    The domain of the function $$\displaystyle f(x) =\frac {1}{\sqrt {(x-1) (x-2)}}$$ is.
    Solution
    For $$f(x)$$ to be defined $$(x-1)(x-2) > 0$$
    $$\Rightarrow x \in (-\infty, 1) \cup (2, \infty)$$
  • Question 9
    1 / -0
    The domain of $$f(x) = \log_e |\log_ex|$$ is.
    Solution
    $$f(x) = log|log x|, (x)$$ is defined if $$|log x| > 0$$ and $$x > 0$$ 

    $$i.e., if x > 0$$ and $$x$$ $$\neq$$ 1

    $$(\because |log x| > 0\,\, if\, \,  x \neq  1)$$

    $$\Rightarrow  x \in (0, 1) \cup  (1, \infty )$$.
  • Question 10
    1 / -0
    If functions $$f\left ( x \right )$$ and $$g\left ( x \right )$$ are defined on $$R\rightarrow R$$ such that
    $$f(x)=x+3, x$$ $$\in  $$ rational
             $$ =4x, x$$ $$\in $$ irrational
    $$g(x)=x+\sqrt{5}$$, x$$\in $$ irrational
          $$  =-x, x$$ $$\in $$ rational
    then $$\left ( f-g \right )\left ( x \right )$$ is
    Solution
    $$f\left( x \right) =x+3, x\epsilon$$  rational 
              $$=4x, x\epsilon$$  irrational

    $$g\left( x \right) =x+\sqrt { 5 } , x \epsilon$$  irrational
              $$= -x,x\epsilon$$  rational 

    $$(f-g)(x)=2x+3, x\ \epsilon$$  rational
                         $$+3x-\sqrt { 5\quad  } x\quad \epsilon$$ irrational

    For one-one; 
    We know that one one function is a $${ f }^{ \underline { n }  }$$ for which every element of the range of the function corresponds to exactly one element of the domain.
     
    But in this case this is not true as for all rational nos. the$$ { f }^{ \underline { n }  }$$ is one one but for irrational $${ f}^{ \underline { n }  }$$, every elements of the range does not corresponds to exactly one element of the domain. 

    $$(f-g)(x)\neq  (f-g)({ x }^{ \prime  })$$         when $$x \epsilon$$ rational and 
                                                                   $$x \epsilon$$ irrational
    for onto:
    The $${ f }^{ \underline { n }  }(f-g)(x)$$ does not cover the whole range of the function.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now