Self Studies

Functions Test ...

TIME LEFT -
  • Question 1
    1 / -0

    The domain of the function, $$f(x) = \displaystyle \dfrac {1}{\sqrt{[x]^2-[x]-6}}$$  is

  • Question 2
    1 / -0

    The domain of the function $$\ln (x-1)$$ is.

  • Question 3
    1 / -0

    The domain of the function, $$f(x) = \log_{10} (\sqrt{x-4}+\sqrt {6-x})$$ is

  • Question 4
    1 / -0

    If $$f : [0, \Pi ] \rightarrow  [-1, 1]$$, f(x) = cosx, then f is.

  • Question 5
    1 / -0

    If $$f(x) = \left\{\begin{matrix} 1&x \in Q \\ 0 &x \notin  Q\end{matrix}\right.$$ then $$fof(\sqrt 3 )$$ is equal to

  • Question 6
    1 / -0

    The domain of the function $$\log \displaystyle \sqrt {\frac {3-x}{2}}$$ is.

  • Question 7
    1 / -0

    The domain of the function $$f(x) = \displaystyle \cfrac { 1 }{ \sqrt { x-\left[ x \right]  }  } $$

  • Question 8
    1 / -0

    The domain of the function $$\displaystyle f(x) =\frac {1}{\sqrt {(x-1) (x-2)}}$$ is.

  • Question 9
    1 / -0

    The domain of $$f(x) = \log_e |\log_ex|$$ is.

  • Question 10
    1 / -0

    If functions $$f\left ( x \right )$$ and $$g\left ( x \right )$$ are defined on $$R\rightarrow R$$ such that
    $$f(x)=x+3, x$$ $$\in  $$ rational
             $$ =4x, x$$ $$\in $$ irrational
    $$g(x)=x+\sqrt{5}$$, x$$\in $$ irrational
          $$  =-x, x$$ $$\in $$ rational
    then $$\left ( f-g \right )\left ( x \right )$$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now