Self Studies

Functions Test 33

Result Self Studies

Functions Test 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If f(g(x))=5x+2 and g(x)=8x then f(x)=
    Solution

  • Question 2
    1 / -0
    if $$f$$ is a bijective function such that $$f(x)=\dfrac {\lambda x+\mu}{ax+\beta}$$ and  if $$f^{-1}(x)=f(x)$$, then
    Solution
    undefined

  • Question 3
    1 / -0
    If $$f\left( x \right) = (1 - x)$$ , $$x \in \left[ { - 3,3} \right]$$ , then the domain of $$f\left( {f\left( x \right)} \right)$$ is
    Solution
    $$f\left(x\right)=1-x$$
    $$f\left(f\left(x\right)\right)=f\left(1-x\right)=1-1+x=x$$
    And $$x\in\left[-3,3\right]$$
    Domain of $$f\left(x\right)$$ is $$\left[-3,3\right]$$
    Domain of $$f\left(f\left(x\right)\right)=$$Domain of $$f\left(1-x\right)$$
    Domain of $$f\left(f\left(x\right)\right)=\left[1-3,3\right]=\left[-2,3\right]$$
  • Question 4
    1 / -0
    If $$f(x)=\frac{x}{\sqrt{1-x^{2}}}$$ and g(x) = $$f(x)=\frac{x}{\sqrt{1+x^{2}}}$$ , then (fog)(x) =
    Solution
    Given:-
    $$f{\left( x \right)} = \cfrac{x}{\sqrt{1 - {x}^{2}}}$$
    $$g{\left( x \right)} = \cfrac{x}{\sqrt{1 + {x}^{2}}}$$
    To find:-
    $$fog{\left( x \right)} = ?$$
    $$fog{\left( x \right)}$$
    $$= f{\left( g{\left( x \right)} \right)}$$
    $$= f{\left( \cfrac{x}{\sqrt{1 + {x}^{2}}} \right)}$$
    $$= \cfrac{\left( \cfrac{x}{\sqrt{1 + {x}^{2}}} \right)}{\sqrt{1 - {\left( \cfrac{x}{\sqrt{1 + {x}^{2}}} \right)}^{2}}}$$
    $$= \cfrac{\left( \cfrac{x}{\sqrt{1 + {x}^{2}}} \right)}{\sqrt{1 - \left( \cfrac{{x}^{2}}{1 + {x}^{2}} \right)}}$$
    $$= \cfrac{\left( \cfrac{x}{\sqrt{1 + {x}^{2}}} \right)}{\sqrt{\left( \cfrac{1 + {x}^{2} - {x}^{2}}{1 + {x}^{2}} \right)}}$$
    $$= \cfrac{\left( \cfrac{x}{\sqrt{1 + {x}^{2}}} \right)}{\left( \cfrac{1}{1 + {x}^{2}} \right)}$$
    $$= \cfrac{x}{\sqrt{1 + {x}^{2}}}$$
    $$\Rightarrow fog{\left( x \right)} = \cfrac{x}{\sqrt{1 + {x}^{2}}}$$
    Hence the correct answer is $$\cfrac{x}{\sqrt{1 + {x}^{2}}}$$.
  • Question 5
    1 / -0
    If $$ f ( x ) = \left( a - x ^ { n } \right) ^ { 1 / n }$$ where $$ a > 0$$ and } $$n$$ is a positive integer then$$( f o f ) ( x )$$ is
    Solution
    $$f(x)=(a-x^n)^{1/n}$$
    $$\therefore f(f(x))=(a-(f(x))^n))^{1/n}$$
    $$\therefore f(f(x))=(a-((a-x^n)^{1/n)^n)^{1/n}}$$
    $$\therefore f(f(x))=(a-((a-x^n)))^{1/n}$$
    $$\therefore f(f(x))=(a-a+x^n)^{1/n}$$
    $$\therefore f(f(x))=(x^n)^{1/n}$$
    $$\therefore(f(x))=x$$
  • Question 6
    1 / -0
    The function $$f ( x ) = \sqrt { \log _ { x ^ { 2 } } x }$$ is defined for $$x$$:
    Solution
    $$\sqrt{\log_{{x}^{2}}{x}}$$ is defined when $${x}^{2}>0$$ and $${x}^{2}\neq 1$$ and $$x>0$$
    $$\Rightarrow\,\left(0,\infty\right)-\left\{1\right\}=\left(1,\infty\right)$$
  • Question 7
    1 / -0
    if $$f\left( x \right) = \log \left( {\dfrac{{1 +x}}{{1 - x}}} \right)$$ and $$g\left( x \right) = \dfrac{{3x + {x^3}}}{{1 + 3{x^2}}}$$ then $$\left( {f(g(x)))} \right)$$ is equal to
    Solution
    $$f(x)=\log\bigg(\dfrac{1+x}{1-x}\bigg)\ and\ g(x)=\dfrac{3x+x^{3}}{1+3x^{2}}$$

    $$f(g(x))=\log\bigg(\dfrac{1+\dfrac{3x+x^{3}}{1+3x^{2}}}{1-\dfrac{3x+x^{3}}{1+3x^{2}}}\bigg)$$

    $$f(g(x))=\log\bigg(\dfrac{\dfrac{1+3x^{2}+3x+x^{3}}{1+3x^{2}}}{\dfrac{1+3x^{2}-3x-x^{3}}{1+3x^{2}}}\bigg)$$

    $$f(g(x))=\log\bigg(\dfrac{1+3x^{2}+3x+x^{3}}{1+3x^{2}-3x-x^{3}}\bigg)$$

    $$f(g(x))=\log\bigg(\dfrac{(1+x)^3}{(1-x)^{3}}\bigg)$$

    $$f(g(x))=\log\bigg(\dfrac{1+x}{1-x}\bigg)^{3}$$

    $$f(g(x))=3\log\bigg(\dfrac{1+x}{1-x}\bigg)$$

    $$f(g(x))=3f(x)$$

  • Question 8
    1 / -0
    If $$f:R \rightarrow R, f(x)=2x-1$$ and $$g; R \rightarrow R, g(x)=x^{2}+2$$, then $$(gof)(x)$$ equals-
    Solution
    $$f(x)=2x-1$$
    $$g(x)=x^2+2$$
    $$g(f(x))=(2x-1)^2+2=4x^2-4x+3$$.

  • Question 9
    1 / -0
    Let $$g(x)=1+x-[x]\quad $$ and $$f(x)=\begin{cases} -1\quad if\quad x<0 \\ 0\quad \quad if\quad x=0 \\ 1\quad \quad if\quad x>0 \end{cases}$$ , then $$\forall \:x,fog(x)$$ equals 
    Solution
    given g(x)=1+x=[x] 1+{x} {x} donates the fractional part of x  so,
    g(x) is always positive
      so, input to f(g(x)) is always positive and 
    hence, fog(x)=1
  • Question 10
    1 / -0
    $$f:c \to c$$ is defined as $$f(x) = \dfrac{{ax + b}}{{cx + d}},bd \ne 0$$ then $$f$$ is a constant function when,
    Solution
    f($$x$$)=$$\frac{ax+b}{cx+d}$$ is a constant function,
     then lets say it equal to same constant m. 
    $$m(cx+d)=ax+b$$ 
    $$a=mc $$
    $$b=md $$
    $$\frac{a}{c}$$ =$$\frac{b}{d}=m$$
    $$\frac{a}{b}$$ =$$\frac{c}{d}$$
     $$ad=bc$$
    C is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now