Self Studies

Functions Test 33

Result Self Studies

Functions Test 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If f(g(x))=5x+2 and g(x)=8x then f(x)=
    Solution

  • Question 2
    1 / -0
    if ff is a bijective function such that f(x)=λx+μax+βf(x)=\dfrac {\lambda x+\mu}{ax+\beta} and  if f1(x)=f(x)f^{-1}(x)=f(x), then
    Solution
    undefined

  • Question 3
    1 / -0
    If f(x)=(1x)f\left( x \right) = (1 - x) , x[3,3]x \in \left[ { - 3,3} \right] , then the domain of f(f(x))f\left( {f\left( x \right)} \right) is
    Solution
    f(x)=1xf\left(x\right)=1-x
    f(f(x))=f(1x)=11+x=xf\left(f\left(x\right)\right)=f\left(1-x\right)=1-1+x=x
    And x[3,3]x\in\left[-3,3\right]
    Domain of f(x)f\left(x\right) is [3,3]\left[-3,3\right]
    Domain of f(f(x))=f\left(f\left(x\right)\right)=Domain of f(1x)f\left(1-x\right)
    Domain of f(f(x))=[13,3]=[2,3]f\left(f\left(x\right)\right)=\left[1-3,3\right]=\left[-2,3\right]
  • Question 4
    1 / -0
    If f(x)=x1x2f(x)=\frac{x}{\sqrt{1-x^{2}}} and g(x) = f(x)=x1+x2f(x)=\frac{x}{\sqrt{1+x^{2}}} , then (fog)(x) =
    Solution
    Given:-
    f(x)=x1x2f{\left( x \right)} = \cfrac{x}{\sqrt{1 - {x}^{2}}}
    g(x)=x1+x2g{\left( x \right)} = \cfrac{x}{\sqrt{1 + {x}^{2}}}
    To find:-
    fog(x)=?fog{\left( x \right)} = ?
    fog(x)fog{\left( x \right)}
    =f(g(x))= f{\left( g{\left( x \right)} \right)}
    =f(x1+x2)= f{\left( \cfrac{x}{\sqrt{1 + {x}^{2}}} \right)}
    =(x1+x2)1(x1+x2)2= \cfrac{\left( \cfrac{x}{\sqrt{1 + {x}^{2}}} \right)}{\sqrt{1 - {\left( \cfrac{x}{\sqrt{1 + {x}^{2}}} \right)}^{2}}}
    =(x1+x2)1(x21+x2)= \cfrac{\left( \cfrac{x}{\sqrt{1 + {x}^{2}}} \right)}{\sqrt{1 - \left( \cfrac{{x}^{2}}{1 + {x}^{2}} \right)}}
    =(x1+x2)(1+x2x21+x2)= \cfrac{\left( \cfrac{x}{\sqrt{1 + {x}^{2}}} \right)}{\sqrt{\left( \cfrac{1 + {x}^{2} - {x}^{2}}{1 + {x}^{2}} \right)}}
    =(x1+x2)( 11+x2)= \cfrac{\left( \cfrac{x}{\sqrt{1 + {x}^{2}}} \right)}{\left( \cfrac{1}{1 + {x}^{2}} \right)}
    =x1+x2= \cfrac{x}{\sqrt{1 + {x}^{2}}}
    fog(x)=x1+x2\Rightarrow fog{\left( x \right)} = \cfrac{x}{\sqrt{1 + {x}^{2}}}
    Hence the correct answer is x1+x2\cfrac{x}{\sqrt{1 + {x}^{2}}}.
  • Question 5
    1 / -0
    If f(x)=(axn)1/n f ( x ) = \left( a - x ^ { n } \right) ^ { 1 / n } where a>0 a > 0 and } nn is a positive integer then(fof)(x)( f o f ) ( x ) is
    Solution
    f(x)=(axn)1/nf(x)=(a-x^n)^{1/n}
    f(f(x))=(a(f(x))n))1/n\therefore f(f(x))=(a-(f(x))^n))^{1/n}
    f(f(x))=(a((axn)1/n)n)1/n\therefore f(f(x))=(a-((a-x^n)^{1/n)^n)^{1/n}}
    f(f(x))=(a((axn)))1/n\therefore f(f(x))=(a-((a-x^n)))^{1/n}
    f(f(x))=(aa+xn)1/n\therefore f(f(x))=(a-a+x^n)^{1/n}
    f(f(x))=(xn)1/n\therefore f(f(x))=(x^n)^{1/n}
    (f(x))=x\therefore(f(x))=x
  • Question 6
    1 / -0
    The function f(x)=logx2xf ( x ) = \sqrt { \log _ { x ^ { 2 } } x } is defined for xx:
    Solution
    logx2x\sqrt{\log_{{x}^{2}}{x}} is defined when x2>0{x}^{2}>0 and x21{x}^{2}\neq 1 and x>0x>0
    (0,){1}=(1,)\Rightarrow\,\left(0,\infty\right)-\left\{1\right\}=\left(1,\infty\right)
  • Question 7
    1 / -0
    if f(x)=log(1+x1x)f\left( x \right) = \log \left( {\dfrac{{1 +x}}{{1 - x}}} \right) and g(x)=3x+x31+3x2g\left( x \right) = \dfrac{{3x + {x^3}}}{{1 + 3{x^2}}} then (f(g(x))))\left( {f(g(x)))} \right) is equal to
    Solution
    f(x)=log(1+x1x) and g(x)=3x+x31+3x2f(x)=\log\bigg(\dfrac{1+x}{1-x}\bigg)\ and\ g(x)=\dfrac{3x+x^{3}}{1+3x^{2}}

    f(g(x))=log(1+3x+x31+3x213x+x31+3x2)f(g(x))=\log\bigg(\dfrac{1+\dfrac{3x+x^{3}}{1+3x^{2}}}{1-\dfrac{3x+x^{3}}{1+3x^{2}}}\bigg)

    f(g(x))=log(1+3x2+3x+x31+3x21+3x23xx31+3x2)f(g(x))=\log\bigg(\dfrac{\dfrac{1+3x^{2}+3x+x^{3}}{1+3x^{2}}}{\dfrac{1+3x^{2}-3x-x^{3}}{1+3x^{2}}}\bigg)

    f(g(x))=log(1+3x2+3x+x31+3x23xx3)f(g(x))=\log\bigg(\dfrac{1+3x^{2}+3x+x^{3}}{1+3x^{2}-3x-x^{3}}\bigg)

    f(g(x))=log((1+x)3(1x)3)f(g(x))=\log\bigg(\dfrac{(1+x)^3}{(1-x)^{3}}\bigg)

    f(g(x))=log(1+x1x)3f(g(x))=\log\bigg(\dfrac{1+x}{1-x}\bigg)^{3}

    f(g(x))=3log(1+x1x)f(g(x))=3\log\bigg(\dfrac{1+x}{1-x}\bigg)

    f(g(x))=3f(x)f(g(x))=3f(x)

  • Question 8
    1 / -0
    If f:RR,f(x)=2x1f:R \rightarrow R, f(x)=2x-1 and g;RR,g(x)=x2+2g; R \rightarrow R, g(x)=x^{2}+2, then (gof)(x)(gof)(x) equals-
    Solution
    f(x)=2x1f(x)=2x-1
    g(x)=x2+2g(x)=x^2+2
    g(f(x))=(2x1)2+2=4x24x+3g(f(x))=(2x-1)^2+2=4x^2-4x+3.

  • Question 9
    1 / -0
    Let g(x)=1+x[x]g(x)=1+x-[x]\quad and f(x)={1ifx<00ifx=01ifx>0f(x)=\begin{cases} -1\quad if\quad x<0 \\ 0\quad \quad if\quad x=0 \\ 1\quad \quad if\quad x>0 \end{cases} , then x,fog(x)\forall \:x,fog(x) equals 
    Solution
    given g(x)=1+x=[x] 1+{x} {x} donates the fractional part of x  so,
    g(x) is always positive
      so, input to f(g(x)) is always positive and 
    hence, fog(x)=1
  • Question 10
    1 / -0
    f:ccf:c \to c is defined as f(x)=ax+bcx+d,bd0f(x) = \dfrac{{ax + b}}{{cx + d}},bd \ne 0 then ff is a constant function when,
    Solution
    f(xx)=ax+bcx+d\frac{ax+b}{cx+d} is a constant function,
     then lets say it equal to same constant m. 
    m(cx+d)=ax+bm(cx+d)=ax+b 
    a=mca=mc
    b=mdb=md
    ac\frac{a}{c} =bd=m\frac{b}{d}=m
    ab\frac{a}{b} =cd\frac{c}{d}
     ad=bcad=bc
    C is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now