Self Studies

Logarithm and Antilogarithm Test 15

Result Self Studies

Logarithm and Antilogarithm Test 15
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The logarithm form of $$\displaystyle (81)^\frac{3}{4} = 27$$ is $$\log_{81} 27 = \displaystyle \frac{3}{m}$$. Then value of $$m$$ is equal to
    Solution
    Given, $$\log_{81} 27 = \displaystyle \frac{3}{m}$$       ...(1)

    Now, $$\displaystyle (81)^\frac{3}{4} = 27$$

    Converting in logarithm form, we can write

    $$\log_{81} 27 = \displaystyle \frac{3}{4}$$.          ...(2)

    From (1) and (2), we get

    $$\displaystyle \dfrac{3}{m}=\displaystyle \dfrac{3}{4}$$

    $$\therefore m=4$$
  • Question 2
    1 / -0
    The logarithm form of $$10^{-3} = 0.001$$ is $$\log_{10} 0.001 = -m$$, then value of $$m$$ is 
    Solution
    Given, $$ { 10 }^{ -3 }= 0.001$$
    $$ \implies \log _{ 10 }{ 0.001 } = -3$$
    $$\therefore m = 3$$.
  • Question 3
    1 / -0
    If $$\log_{10}(x - 10) = 1$$, then value of $$x$$ is
    Solution
    Since, $$ \log _{ 10 }{ (x-10) } =1$$

    $$\implies (x -10)=10^1$$

    $$ \implies x = 20 $$.
  • Question 4
    1 / -0
    If $$\displaystyle 64^{a}=\frac{1}{256^{b}}$$, then $$3a + 4b$$ equals:
    Solution
    $$ 64^{a}=\dfrac{1}{256^{b}}$$
    $$\Rightarrow (2^{6})^{a}=\dfrac{1}{(2^{8})^{b}}$$
    $$ \Rightarrow 2^{6a}\times 2^{8b}=1$$
    $$\Rightarrow 2^{6a+8b}=2^{0}$$
    $$ \Rightarrow 6a+8b=0$$
    $$\Rightarrow 3a+4b=0$$
  • Question 5
    1 / -0
    If $$x = 2$$ and $$y = 3$$, then find the value of $$\left[ \displaystyle\frac { 1 }{ x^{ x } } +\displaystyle\frac { 1 }{ y^{ y } }  \right] $$.
    Solution
    $$\cfrac { 1 }{ x^{ x } } +\cfrac { 1 }{ y^{ y } } =\cfrac { 1 }{ 2^{ 2 } } +\cfrac { 1 }{ 3^{ 3 } }$$
                      $$ =\cfrac { 1 }{ 4 } +\cfrac { 1 }{ 27 } \\   =\cfrac { 27+4 }{ 108 } $$
                      $$=\cfrac { 31 }{ 108 } $$
  • Question 6
    1 / -0
    If $$\log_4m\,=\,1.5$$, then the value of $$m$$ is equal to
    Solution
    Since, $$\log _{ 4 } m\, =\, 1.5$$
    $$\Rightarrow m={ 4 }^{ 1.5 }=2^{2\times 1.5}=2^3=8$$
  • Question 7
    1 / -0
    If $$ \log (a)^{3} + \log a$$ = $$m \log a$$, then value of $$m$$ is equal to
    Solution
    $$\textbf{Step 1 : Use the rule of logarithm}$$
                     $$\text{According to logarithm power rule,}$$
                     $$\because \log_e( X ^Y) = Y . \log_e(X)$$
                     $$\text{Therefore, }\log(a)^3 = 3. \log \:a$$
                     $$\text{Since,} \log (a)^3  + \log a =  m \log a$$
                     $$\text{Therefore, }3. \log a + \log a=m \log a$$
                     $$4  \log a=m \:\log\:a$$
                     $$\text{By comparing both the sides we get,}$$
                     $$m=4 $$

    $$\textbf{Hence, option B is correct.}$$
  • Question 8
    1 / -0
    The value of $$4(7^1.\, 7^{-1}.\, 7^{-1}.7^0)$$ is
    Solution

  • Question 9
    1 / -0
    If $$ \dfrac{\log 81}{\log 27} = x$$, then the value of $$x$$ is equal to 
    Solution
    $$ \dfrac{\log 81}{\log 27} = x$$
    $$\Rightarrow x = \dfrac{\log 3^4}{\log 3^3} = \dfrac{4 \log 3}{3 \log 3} = \dfrac{4}{3}$$
  • Question 10
    1 / -0
    If $$\displaystyle \sqrt{3^{n}}=81$$. Then n is equal to
    Solution
    $$\Rightarrow \sqrt{3^{n}}=81$$
    $$\Rightarrow 3^{n/2}=3^{4}$$
    Base are same so
    $$\Rightarrow \frac{n}{2}=4\Rightarrow n=8$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now