$$0.2^{\log_{\sqrt{5}} \left (\dfrac{1}{4} + \dfrac{1}{8} + \dfrac{1}{16} + ... \right )} $$ $$....(1)$$
$$\textbf{Step 1: Let}\ y = \dfrac{1}{4} + \dfrac{1}{8} + \dfrac{1}{16} + ... $$
This is a infinite term G.P
where $$a = \dfrac{1}{4} , r = \dfrac{1}{2} , \left [S_{y} = \dfrac{a}{1 - r} \right ] $$
Hence sum of $$S_{y} = \dfrac{\dfrac{1}{4}}{1 - \dfrac{1}{2}}$$
$$S_{y} = \dfrac{\dfrac{1}{4}}{\dfrac{1}{2}} = \dfrac{1}{2} $$ $$....(2)$$
Put the this value in eq. $$(1)$$
$$ = (0.2)^{\log_{\sqrt{5}} \left (\dfrac{1}{2} \right )} $$
$$ = \left (\dfrac{1}{5} \right )^{\log_{5^{1/2}} \left (\dfrac{1}{2} \right )}$$ $$....(3)$$
$$\textbf{Step 2: Using the principle properties of logarithm} $$
$$\Rightarrow \log_{a^{P}} {m} = \dfrac{1}{p} \log_{a} m $$ [$$ a>0,\neq1 , m>0$$]
$$\Rightarrow a^{\log_{a} m} = m $$
So from eq. $$(3)$$
$$=\left (\dfrac{1}{5} \right )^{2 \log_{5} \left (\frac{1}{2} \right )} $$
$$=(5^{-1})^{2 \log_{5} \frac{1}{2}}$$
$$=5^{-2 \log_{5} \frac{1}{2}}$$
$$ =5^{\log_{5} \left (\frac{1}{2} \right )^{-2}} $$
$$ = \left (\dfrac{1}{2} \right )^{-2} $$
$$ = \dfrac{1}{2^{-2}} $$
$$ = 2^{2}$$
$$ = 4 $$