Self Studies

Logarithm and Antilogarithm Test 22

Result Self Studies

Logarithm and Antilogarithm Test 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of $$\frac { \log _{ 2 }{ 24 }  }{ \log _{ 96 }{ 2 }  } -\frac { \log _{ 2 }{ 192 }  }{ \log _{ 12 }{ 2 }  } $$ is:
    Solution
    Let $$\log _{ 2 }{ 12 }=a$$, then $$\frac { 1 }{ \log _{ 96 }{ 2 }  }=\log _{ 2 }{ 96 }=\log _{ 2 }{ { 2 }^{ 3 } } \times 12=3+a$$
    $$ \log _{ 2 }{ 24 }=1+a$$
    $$\Rightarrow \log _{ 2 }{ 192 }=\log _{ 2 }{ \left( 16 \times 12 \right) }=4+a$$ and $$\frac { 1 }{ \log _{ 12 }{ 2 }  } =\log _{ 2 }{ 12 } =a$$
    Therefore, the given expression =$$(1+a)(3+a)-(4+a)a=3$$.
  • Question 2
    1 / -0
    $$a\times a\times b\times b\times b$$ can be written as 
    Solution
    we have, $$a\times a\times b\times b\times b$$
    $$=a^2 \times b^3 =a^2b^3$$

    Hence, $$a\times a\times b\times b\times b$$ can be written as $$a^2b^3$$
  • Question 3
    1 / -0
    The value of $$0.2^{log_{\sqrt{5}} \Big( \dfrac{1}{4} + \dfrac{1}{8} + \dfrac{1}{16} + \dots \Big)}$$ is
    Solution
    $$\textbf{Given that:}$$

         $$0.2^{\log_{\sqrt{5}} \left (\dfrac{1}{4} + \dfrac{1}{8} + \dfrac{1}{16} + ... \right )} $$                                                                                                                               $$....(1)$$

    $$\textbf{Step 1: Let}\ y = \dfrac{1}{4} + \dfrac{1}{8} + \dfrac{1}{16} + ... $$

                     This is a infinite term G.P

                     where $$a = \dfrac{1}{4} , r = \dfrac{1}{2} , \left [S_{y} = \dfrac{a}{1 - r} \right ] $$

                     Hence sum of $$S_{y} = \dfrac{\dfrac{1}{4}}{1 - \dfrac{1}{2}}$$

                      $$S_{y} = \dfrac{\dfrac{1}{4}}{\dfrac{1}{2}} = \dfrac{1}{2} $$                                                                                                                                   $$....(2)$$

                    Put the this value in eq. $$(1)$$

                   $$ = (0.2)^{\log_{\sqrt{5}} \left (\dfrac{1}{2} \right )} $$ 

                   $$ = \left (\dfrac{1}{5} \right )^{\log_{5^{1/2}} \left (\dfrac{1}{2} \right )}$$                                                                                                                               $$....(3)$$ 

    $$\textbf{Step 2: Using the principle properties of logarithm} $$

                          $$\Rightarrow \log_{a^{P}} {m} = \dfrac{1}{p} \log_{a} m $$     [$$ a>0,\neq1 , m>0$$]

                          $$\Rightarrow a^{\log_{a} m} = m $$ 

                     So from eq. $$(3)$$

                         $$=\left (\dfrac{1}{5} \right )^{2 \log_{5} \left (\frac{1}{2} \right )} $$ 

                        $$=(5^{-1})^{2 \log_{5} \frac{1}{2}}$$

                        $$=5^{-2 \log_{5} \frac{1}{2}}$$

                         $$ =5^{\log_{5} \left (\frac{1}{2} \right )^{-2}} $$

                         $$ = \left (\dfrac{1}{2} \right )^{-2} $$

                          $$ = \dfrac{1}{2^{-2}} $$

                          $$ = 2^{2}$$

                          $$ =  4 $$
  • Question 4
    1 / -0
    $$\left(\dfrac {1}{10}\right)^0$$ is equal to
    Solution
    Using law of exponents, $$a^0=1$$
    where $$a\neq 1$$
    $$\Rightarrow \ \left(\dfrac {1}{10}\right)^0 =1$$
  • Question 5
    1 / -0
    By solving $$(6^0 -7^0) \times (6^0+7^0)$$, we get ________.
    Solution
    $$0$$
    $$(6^0 -7^0) \times (6^0+7^0)$$
    $$=(1-1) \times (1+1)$$
    $$=0\times 2=0$$
  • Question 6
    1 / -0
    $$\log_{\sqrt{2}} x = 4$$ then value of $$x$$ will be
    Solution
    $$\because \log_{a}n=x$$
    $$\therefore a^{x}=n$$
    Given $$\log_{\sqrt{2}} x= 4$$
    Then $$(\sqrt{2})^{4} = x$$
    $$\Rightarrow x = (\sqrt{2})^{4} = (2^{1/2})^{4} = 2^{2} = 4$$
    Hence, option (C) is correct.
  • Question 7
    1 / -0
    $$\log_{x} 243 = 2.5$$, then value of $$x$$ will be:
    Solution
    $$\because \log_{a} n = x$$
    $$\Rightarrow a^{x} = n$$
    Similarly $$\log_{x} 243 = 2.5$$
    $$243 = x^{2.5}$$
    $$x^{5/2} = 243 = (3)^{5}$$
    Squaring on both sides,
    $$(x^{5/2})^{2} = [(3)^{5}]^{2}$$
    $$x^{5} = (3^{2})^{5}$$
    On comparing, $$x = 3^{2} = 9$$
    Hence, option (A) is correct
  • Question 8
    1 / -0
    The value of $$\log (1 + 2 * 3)$$:
    Solution
    $$\log (1 + 2 * 3) = \log (1 + 6) = \log 7$$
    Hence, option (D) is correct
  • Question 9
    1 / -0
    Number $$\log_{2} 7$$ is:
    Solution
    $$\log_{2} 7 = x$$
    $$7 = 2^{x}$$
    Taking $$\log$$ on both sides,
    $$\log 7 = \log 2^{x}$$
    $$\Rightarrow x \log 2 = \log 7$$
    $$\Rightarrow x=\dfrac{\log 7}{\log 2}=\dfrac{0.8451}{0.3010}=2.8076$$
    = Irrational number. 
    Hence, option (C) is correct.
  • Question 10
    1 / -0
    Multiply $$10^4$$ by $$10^2$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now