Self Studies

Logarithm and Antilogarithm Test 23

Result Self Studies

Logarithm and Antilogarithm Test 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Approximate of $$\log_{11}21$$ is
    Solution
    Approximate value of $$\log _{ 11 }{ 21 } $$
    $$=\log _{ 11 }{ (7\times 3) } $$
    $$=\log _{ 11 }{ 7 } +\log _{ 11 }{ 3 }$$
    $$ =0.8115+0.4581$$
    $$=1.27$$
  • Question 2
    1 / -0
    $$2^{1/4}4^{1/8}8^{1/16}16^{1/32}$$....... is equal to
  • Question 3
    1 / -0
    If $$\log_{10} 2 = 0.3010$$, then the number of digits in $$2^{64}$$ is
    Solution
    Given $$\log _{ 10 }{ 2 } =0.301$$
    $$\log _{ 10 }{ 2^{64} } =64 \times \log _{ 10 }{ 2 } =64 \times 0.3010=19.264$$
    $$\Rightarrow 2^{64}=10^{19.264}$$
    The number of digits in $$10^{19}$$ is $$20$$ , there will be $$21$$ digits from $$10^{21}$$
    The number $$10^{19.264}$$ lies between them
    Therefore the number of digits in $$10^{19.264}$$ is $$20$$
    Therefore the correct option is $$D$$
  • Question 4
    1 / -0
    Evaluate using logarithm table: $$\dfrac {28.45 \times \sqrt [3] {0.3254}}{32.43 \times \sqrt [5] {0.3046}}$$
    Solution
    Let $$y=\dfrac { 28.45\times \sqrt [ 3 ]{ .3254 }  }{ 32.43\times \sqrt [ 3 ]{ .3046 }  } $$
    $$ \ln { y } =\ln { 28.45 } +\ln { \sqrt [ 3 ]{ .3254 }  } -(\ln { 32.43 } +\ln { \sqrt [ 5 ]{ .3046 }  } )\\ \ln { y } =\ln { 25.45 } +\dfrac { 1 }{ 3 } \ln { .3245- } \ln { 32.43 } -\dfrac { 1 }{ 5 } \ln { .4046 } \\ \ln { y } =3.236+(-.375)-3.479-(-.237)\\ \ln { y } =-.381$$
    $$ y=$$ anti $$\ln { (-.381) } $$
    $$ y=.7656$$
    So, option B is correct.
  • Question 5
    1 / -0
    If $$\dfrac{\log_{2}a}{4} = \dfrac{\log_{2}b}{6} = \dfrac{\log_{2}c}{3p}$$ and also $$a^{3}b^{2}c = 1$$, then the value of $$p$$ is equal to
    Solution
    $$\dfrac { \log _{ 2 }{ a }  }{ 4 } =\dfrac { \log _{ 2 }{ b }  }{ 6 } =\dfrac { \log _{ 2 }{ c }  }{ 3p }  = x\\ \log _{ 2 }{ a }  = 4x $$

    $$\Rightarrow  a = { 2 }^{ 4x }$$

    $$ \log _{ 2 }{ b }  = 6x$$

    $$ \Rightarrow b = { 2 }^{ 6x }$$

    $$ \log _{ 2 }{ c }  = 3px$$

    $$ \Rightarrow c = { 2 }^{ 3px }$$

    $$ \\ { a }^{ 3 }{ b }^{ 2 }c = 1$$

    $${ 2 }^{ 12x }{ \cdot 2 }^{ 12x }\cdot { 2 }^{ 3px } ={ 2 }^{ 0 }$$

    $$ { 2 }^{ 24x+3px } ={ 2 }^{ 0 }$$

    $$ \therefore 24x +3px = 0$$

    $$ \therefore 3px = -24x$$

    $$ \therefore p = -8 $$
  • Question 6
    1 / -0
    Given $$log_3(a) = c$$ and $$log_3(b)=2c, a =$$
    Solution
    Given, $$\log _{ 3 }{ (a) } =c$$ and $$\log _{ 3 }{ (b) } =2c$$ 
    $$\therefore a={ 3 }^{ c }$$ and $$b={ 3 }^{ 2c }$$
    Now consider $$a^2$$ as follows:
    $$a^{ 2 }={ (3 }^{ c })^{ 2 }$$
    $$ \Rightarrow a^{ 2 }={ 3 }^{ 2c }$$
    $$ \Rightarrow a^{ 2 }=b$$
    $$\Rightarrow  a=\sqrt { b }$$ 
  • Question 7
    1 / -0
    The number $$ N=6 \log_{10}2+\log_{10}31$$ lies between two successive integers, whose sum is equal to
    Solution
    $$N=6\log_{10}2+\log_{10}31$$

    $$=\log_{10}2^{6}+log_{10}(31)$$

    $$=\log_{10}(2^{6}.31)$$

    $$=\log_{10}(64\times31)$$
    $$=\log_{10}(1984)$$

    Now 
    $$\log_{10}(10^{3})=\log_{10}(1000)=3$$
    Similarly
    $$\log_{10}(10^{4})=4$$

    Since 
    $$10^{3}<1984<10^{4}$$

    $$3<\log_{10}(1984)<4$$
    Hence it lies between $$3$$ and $$4$$.
    The sum of these two integers is $$7$$.
  • Question 8
    1 / -0
    Let $$a = \log_3\log_32$$. An integer k satisfying  $$1< 2^{(-k+3^{-a})} < 2,$$  must be less than _____.
    Solution

  • Question 9
    1 / -0

    Directions For Questions

    Given that $$N= 7^{log_{49} 900}, A= 2^{log_24}+ 3 ^{log_24}+ 4^{log_2^2}- 4^{log_23}, D= (log_549)(log_7125)$$ Then answer the following questions: ( Using the value of N, A, D)

    ...view full instructions

    If $$log_AD= a, $$ then value of $$log_612$$ is (in terms of a)
    Solution

  • Question 10
    1 / -0
    If $$x=198!$$ then value of the expression $$\dfrac {1}{\log_{2}x}+\dfrac {3}{\log_{2}x}+...\dfrac {198}{\log_{2}x}$$ equals ?
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now