Self Studies

Logarithm and Antilogarithm Test 4

Result Self Studies

Logarithm and Antilogarithm Test 4
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Evaluate: $$(256)^{0.16}\, \times\, (256)^{0.09}$$
    Solution
    $${ \left( 256 \right)  }^{ 0.16 }\times { \left( 256 \right)  }^{ 0.09 }$$ $$={ \left( 256 \right)  }^{ 0.16+0.09 }$$

    $$={ \left( 256 \right)  }^{ 0.25 }$$ 

    $$={ \left( 256 \right)  }^{ \tfrac { 25 }{ 100 }  }$$

    $$ ={ \left( 256 \right)  }^{ \tfrac { 1 }{ 4 }  }$$ 

    $$={ 2 }^{ 8\times \tfrac { 1 }{ 4 }  }$$ $$={ 4 }$$
  • Question 2
    1 / -0
    The value of $$\displaystyle \frac {1}{(216)^{-2/3}}\, +\, \displaystyle \frac {1}{(256)^{-3/4}}\, +\, \displaystyle \frac {1}{(32)^{-1/5}}$$ is:
    Solution
    $$ \cfrac {1}{(216)^{-\tfrac 23}} +  \cfrac {1}{(256)^{-\tfrac 34}} +  \cfrac {1}{(32)^{-\tfrac 15}}$$
    $$= \cfrac {1}{(6^3)^{-\tfrac 23}} +  \cfrac {1}{(4^4)^{-\tfrac 34}} +  \cfrac {1}{(2^5)^{-\tfrac 15}}$$
    $$=  \cfrac {1}{6^{-2}} +  \cfrac {1}{4^{-3}} +  \cfrac {1}{2^{-1}}$$
    $$ = (6^2 + 4^3 + 2^1)$$
    $$= (36 + 64 + 2^1) $$
    $$= 102$$
  • Question 3
    1 / -0
    The value of $$(8^{-25}\, -\, 8^{-26})$$ is
    Solution
    $$(8^{-25} - 8^{-26})$$ $$=\left ( { \dfrac {1}{8^{25}}} - { \dfrac {1}{8^{26}}} \right ) $$

                          $$=\dfrac{8^{25}(8-1)}{8^{25}\times 8^{26}}$$

                          $$= \cfrac {(8-1)}{8^{26}}$$ 

                           $$=7 \times 8^{-26}$$

    Thus option $$(B)$$ is correct.
  • Question 4
    1 / -0
    Evaluate: $$(0.04)^{-1.5} $$
    Solution
    $$(0.04)^{-1.5} = \left ( \cfrac {4}{100} \right )^{-1.5}$$$$=\,\left (\cfrac {1}{25} \right )^{-\tfrac 32} $$$$= (25)^{\tfrac 32}$$$$ = (5^2)^{\tfrac 32}$$$$= 5^3 = 125$$
  • Question 5
    1 / -0
    $$\displaystyle 2^{73}-2^{72}-2^{71}$$ is the same as :
    Solution
    $$2^{73}-2^{72}-2^{71}=2^{71}(2^2-2^1-1)$$
     
                               $$=2^{71}(4-2-1)$$

                                $$=2^{71}$$

    Therefore, Option C is correct.


  • Question 6
    1 / -0
    if $$\dfrac{(23)^{9}-(23)^{8}}{22}=(23)^{x}$$ then $$x$$ equals : 
    Solution
    $$LHS= \dfrac{(23)^{9}-(23)^{8}}{22}$$ 
               $$=\dfrac{23^8(23-1)}{22}$$
               $$=\dfrac{23^8\times 22}{22}$$
               $$=23^8$$

    $$RHS=23^x$$

    On comparing $$LHS$$ and $$RHS$$ we get,
    $$x=8$$
  • Question 7
    1 / -0
    Simplify : $$\displaystyle \frac{2^{2009}-2^{2007}}{2^{2006}-2^{2008}}$$
    Solution
    $$\displaystyle \frac{2^{2009}-2^{2007}}{2^{2006}-2^{2008}}=\frac{2^{2007}(2^2-1)}{-(2)^{2006}(2^2-1)}$$
                              $$=-2^{2007-2006}$$
                              $$=-2$$
    Option B is correct.
  • Question 8
    1 / -0
    The value of $$5^{1/4}\, \times\, (125)^{0.25}$$ is
    Solution
    $$5^{1/4} \times (125)^{0.25} = 5^{0.25} \times (5^3)^{0.25}$$

    $$= 5^{0.25} \times 5^{(3\times 0.25)}$$

    $$ = 5^{0.25} \times 5^{0.75}$$

    $$= 5^{(0.25 + 0.75)} = 5^1 = 5$$
  • Question 9
    1 / -0
    Simplify: $$\displaystyle \frac{3^{-5} \times 10^{-5} \times 125}{5^{-7} \times 6^{-5}}$$
    Solution
    $$ \cfrac{3^{-5} \times 10^{-5} \times 125}{5^{-7} \times 6^{-5}}$$

    $$=\cfrac { 3^{ -5 }\times (2\times 5)^{ -5 }\times 5^{ 3 } }{ 5^{ -7 }\times (2\times 3)^{ -5 } } $$

    $$=\cfrac { 3^{ -5 }\times 2^{ -5 }\times 5^{ -5 }\times 5^{ 3 } }{ 5^{ -7 }\times 2^{ -5 }\times 3^{ -5 } } $$

    $$=3^{ -5+5 }\times 2^{ -5+5 }\times 5^{ -5+3+7 }$$

    $$=5^{5}$$

    $$=3125$$
  • Question 10
    1 / -0
    $$\displaystyle \left ( \frac{-4}{5} \right )^{4} \times \left ( \frac{-4}{5} \right )^{2} = \frac{16}{25}$$
    Solution
     $$(-\frac { 4 }{ 5 } )^{ 4 }*(-\frac { 4 }{ 5 } )^{ 2 }=(-\frac { 4 }{ 5 } )^{ 4+2 }=(-\frac { 4 }{ 5 } )^{ 6 }\neq \frac { 16 }{ 25 } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now