Self Studies

Logarithm and A...

TIME LEFT -
  • Question 1
    1 / -0

    Evaluate: $$(256)^{0.16}\, \times\, (256)^{0.09}$$

  • Question 2
    1 / -0

    The value of $$\displaystyle \frac {1}{(216)^{-2/3}}\, +\, \displaystyle \frac {1}{(256)^{-3/4}}\, +\, \displaystyle \frac {1}{(32)^{-1/5}}$$ is:

  • Question 3
    1 / -0

    The value of $$(8^{-25}\, -\, 8^{-26})$$ is

  • Question 4
    1 / -0

    Evaluate: $$(0.04)^{-1.5} $$

  • Question 5
    1 / -0

    $$\displaystyle 2^{73}-2^{72}-2^{71}$$ is the same as :

  • Question 6
    1 / -0

    if $$\dfrac{(23)^{9}-(23)^{8}}{22}=(23)^{x}$$ then $$x$$ equals : 

  • Question 7
    1 / -0

    Simplify : $$\displaystyle \frac{2^{2009}-2^{2007}}{2^{2006}-2^{2008}}$$

  • Question 8
    1 / -0

    The value of $$5^{1/4}\, \times\, (125)^{0.25}$$ is

  • Question 9
    1 / -0

    Simplify: $$\displaystyle \frac{3^{-5} \times 10^{-5} \times 125}{5^{-7} \times 6^{-5}}$$

  • Question 10
    1 / -0

    $$\displaystyle \left ( \frac{-4}{5} \right )^{4} \times \left ( \frac{-4}{5} \right )^{2} = \frac{16}{25}$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now