Self Studies

Straight Lines Test -1

Result Self Studies

Straight Lines Test -1
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The straight lines x + y = 0 , 3x - y – 4 = 0 , x + 3y – 4 = 0 form a triangle which is

    Solution

    Explanation:

    The lines formed by these lines is right angled, triangle.

    Two lines are perpendicular to each other if the product  od their slopes is -1

    Slope of the lines  3x - y – 4 = 0 , x + 3y – 4 = 0 are 3 and -1/3 respectively.

    The product of these slopes is -1

    Hence the lines3x - y – 4 = 0 , x + 3y – 4 = 0  are perpendicular to each other.

    Therefore the triangle formed by these lines is a right angled triangle.

     

  • Question 2
    1 / -0

    Slope of any line parallel to X axis is

    Solution

    Explanation:

    Since the angle made with x axis is zero, since tanθ is the slope. Then tan0 = 0

    Hence the slpoe of the line parallel to X-axis is zero

    Option 1 is the correct answer.

     

  • Question 3
    1 / -0

    Projection (the foot of perpendicular) from ( x , y ) on the x – axis is

    Solution

    Let L be the foot of the perpendicular from the X axis. Therefore its y coocrdinate is zero

    Therefore the coordiantes of the point L is (x,0)

    Hence option 1 is the correct answer

     

  • Question 4
    1 / -0

    Slope of a line is not defined if the line is

    Solution

    Explanation:

    Vertical lines hve undefined slopes. Hence a line which is parallel to Y-axis has undefined slopes.

    Hence option 1 is correct.

     

  • Question 5
    1 / -0
    If the distance between the points $$(4, p)$$ and $$(1, 0)$$ is $$5$$, then the value of $$p$$ is:
    Solution
    The given points are $$(1,0)$$ and $$ (4,p)$$  
    $$d=\sqrt { { \left( { x }_{ 2 }-{ x }_{ 1 } \right)  }^{ 2 }+{ \left( { y }_{ 2 }-{ y }_{ 1 } \right)  }^{ 2 } }$$
    $$\Rightarrow 5 =\sqrt{(4-1)^2+p^2}$$
    $$\Rightarrow 25 =(4-1)^2+p^2$$
    $$\Rightarrow 25-9=p^2$$
    $$\Rightarrow p^2=16$$
    $$\Rightarrow p=+4,-4$$
  • Question 6
    1 / -0
    The coordinates of the point which is equidistant from the three vertices of the $$\Delta$$ AOB as shown in the Fig. is

    Solution
    $$ The\quad vertices\quad of\quad the\quad given\quad \Delta ABO\quad are\\ A\left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 0,2y \right) ,\quad B\left( { x }_{ 2 },{ y }_{ 2 } \right) =\left( 2x,0 \right) \quad \& \quad O\left( { x }_{ 3 },{ y }_{ 3 } \right) =\left( 0,0 \right) .\\ Let\quad the\quad point\quad I\left( p,q \right) \quad be\quad at\quad equal\quad distance\quad from\quad A,\quad B\quad \& \quad O.\quad \\ Using\quad the\quad distance\quad formula\\ d=\sqrt { { \left( { x }_{ 1 }-{ x }_{ 2 } \right)  }^{ 2 }+{ \left( { y }_{ 1 }-{ y }_{ 2 } \right)  }^{ 2 } } \quad we\quad obtain\\ AI=d=\sqrt { { \left( { x }_{ 1 }-{ x }_{ 2 } \right)  }^{ 2 }+{ \left( { y }_{ 1 }-{ y }_{ 2 } \right)  }^{ 2 } } =\sqrt { { \left( 0-{ p } \right)  }^{ 2 }+{ \left( { 2y }-{ q } \right)  }^{ 2 } } ......(i)\\ Similarly\\ BI=\sqrt { { \left( 2x-{ p } \right)  }^{ 2 }+{ \left( { 0 }-{ q } \right)  }^{ 2 } } .......(ii)\quad and\\ OI=\sqrt { { \left( 0-{ p } \right)  }^{ 2 }+{ \left( { 0 }-{ q } \right)  }^{ 2 } } =\sqrt { { p }^{ 2 }+{ q }^{ 2 } } .........(iii)\\ Since\quad AI=BI\quad We\quad have\\ \sqrt { { \left( 0-{ p } \right)  }^{ 2 }+{ \left( { 2y }-{ q } \right)  }^{ 2 } } =\quad \sqrt { { \left( 2x-{ p } \right)  }^{ 2 }+{ \left( { 0 }-{ q } \right)  }^{ 2 } } \\ \Longrightarrow { y }^{ 2 }-qy={ x }^{ 2 }-px.........(iv)\\ Again\quad BI=OI\\ \therefore \quad \sqrt { { \left( 2x-{ p } \right)  }^{ 2 }+{ \left( { 0 }-{ q } \right)  }^{ 2 } } =\sqrt { { p }^{ 2 }+{ q }^{ 2 } } \\ \Longrightarrow { x }^{ 2 }-xp=0\\ \Longrightarrow x=\left( 0,p \right) .\quad We\quad reject\quad x=0\quad since\quad 0\quad is\quad the\quad abscissa\quad of\\ the\quad vertex\quad O\quad \& \quad it\quad is\quad impossible\quad for\quad x\quad to\quad be\quad =0.\\ \therefore x=p.\quad Substituting\quad this\quad value\quad of\quad x\quad in\quad (iv)\quad we\quad have\\ { y }^{ 2 }-qy={ p }^{ 2 }-{ p }^{ 2 }=0\\ \Longrightarrow y=\left( 0,q \right) .\quad We\quad reject\quad y=0\quad since\quad 0\quad is\quad the\quad ordinate\quad of\\ the\quad vertex\quad O\quad \& \quad it\quad is\quad impossible\quad for\quad y\quad to\quad be\quad =0.\\ \therefore \quad x=p,\quad y=q.\quad i.e\quad I\left( p,q \right) =\left( x,y \right) .\\ Ans-\quad Option\quad A\\ \\NOTE-\\ A\quad point,\quad which\quad is\quad equidistance\quad from\quad the\quad vertices\quad of\quad a\quad \Delta ,\\ is\quad the\quad incentre\quad of\quad the\quad \Delta .\quad So\quad it\quad will\quad lie\quad in\quad the\quad interior\quad of\quad \\ the\quad \Delta .\\ \\ \\ \\  $$
  • Question 7
    1 / -0
    The area of a triangle with vertices $$(a, b + c), (b, c + a)$$ and $$(c, a + b)$$ is
    Solution
    The area of $$\triangle ABC$$ with vertices $$A\equiv(x_1, y_1)$$, $$B\equiv(x_2, y_2)$$ and $$C\equiv(x_3, y_3)$$ is given as,
    $$A(\triangle ABC) = \left|\dfrac12[x_1(y_3-y_2) +x_2(y_1 - y_3) + x_3(y_2-y_1) ]\right|$$
    In this problem,
    $$A(\triangle ABC) = \left|\dfrac12[a(a+b-(c+a)) +b(b+c - (a+b)) + c(c+a-(b+c)) ]\right|$$
    $$\therefore A(\triangle ABC) = \left|\dfrac12[ab-ac + bc-ba + ca-cb]\right|$$
    $$\therefore A(\triangle ABC) = 0$$
    Hence, the correct Option is D.
  • Question 8
    1 / -0
    The line $$3x-4y+8=0$$ is rotated through an angle $$\displaystyle \frac { \pi  }{ 4 } $$ in the clockwise direction about the point $$(0,2)$$. The equation of the line in its new position is 
    Solution
    $$\displaystyle \tan { \theta  } =\frac { 3 }{ 4 } ,\phi =\theta +\frac { 3\pi  }{ 4 } $$
    $$\displaystyle m=\tan { \phi  } =\tan { \left( \theta +\frac { 3\pi  }{ 4 }  \right)  } =\frac { \tan { \theta  } -1 }{ 1+\tan { \theta  }  } =\frac { \frac { 3 }{ 4 } -1 }{ 1+\frac { 3 }{ 4 }  } =-\frac { 1 }{ 7 } $$
    Equation of $$AC$$ is $$\displaystyle y-2=-\frac { 1 }{ 7 } \left( x-0 \right) \Rightarrow x+7y-14=0$$

  • Question 9
    1 / -0
    Plot $$(3, 0), (5, 0)$$ and $$(0, 4) $$ on cartesian plane. Name the figure formed by joining these points and find its area.
    Solution
    The figure is a triangle.
    We know that the area of the triangle whose vertices are $$\displaystyle (x_{1},y_{1}),(x_{2},y_{2}),$$ and $$(x_{3},y_{3})$$ is $$\cfrac{1}{2}\left | x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1}) +x_{3}(y_{1}-y_{2})\right |$$
    Therefore, 
    Area $$= \dfrac{1}{2} [3(0-4)+5(4-0)+0] = 4$$ square units.

  • Question 10
    1 / -0
    Find the area of triangle having vertices $$A (6, 10), B (4, 5)$$ and $$C (3, 8)$$ .
    Solution
    The point are $$ A\left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 6,10 \right) , B\left( { x }_{ 2 },{ y }_{ 2 } \right) =\left( 4,5 \right) $$ and $$ C\left( { x }_{ 3 },{ y }_{ 3 } \right) =\left( 3,8 \right) $$. 
    $$ ar\Delta ABC=\dfrac { 1 }{ 2 } \left\{ { x }_{ 1 }\left( { y }_{ 2 }-{ y }_{ 3 } \right) +{ x }_{ 2 }\left( { y }_{ 3 }-{ y }_{ 1 } \right) +{ x }_{ 3 }\left( { y }_{ 1 }-{ y }_{ 2 } \right)  \right\} $$
    $$ \Rightarrow ar\Delta ABC=\dfrac { 1 }{ 2 } \left\{ 6\left( 5-8 \right) +4\left( 8-10 \right) +3\left( 10-5 \right)  \right\} $$ sq. units
    $$ \Rightarrow ar\Delta ABC=5.5$$ sq. units
  • Question 11
    1 / -0
    The area of a triangle with vertices $$A (3, 0), B (7, 0)$$ and $$C (8, 4)$$ is
    Solution
    The area of the  $$ \Delta ABC$$ with vertices 
    $$ A\left( { x }_{ 1 },{ y }_{ 1 } \right)=(3,0), B\left( { x }_{ 2 },{ y }_{ 2 } \right)=(7,0)\ \&\ C\left( { x }_{ 3 },{ y }_{ 3 } \right)=(8,4)$$ is 
    $$ Ar.\Delta ABC=\dfrac { 1 }{ 2 } \left[ { x }_{ 1 }\left( { y }_{ 2 }-{ y }_{ 3 } \right) +{ x }_{ 2 }\left( { y }_{ 3 }-{ y }_{ 1 } \right) +{ x }_{ 3 }\left( { y }_{ 1 }-{ y }_{ 2 } \right)  \right]$$
    $$=\dfrac { 1 }{ 2 } \left\{ 3\left( 0-4 \right) +7\left( 4-0 \right) +8\left( 0-0 \right)  \right\}$$ sq.units $$=8$$ sq. units.
    Hence, option C.
  • Question 12
    1 / -0
    The points $$A (2, 9), B (a, 5)$$ and $$C (5, 5) $$ are the vertices of a triangle $$ABC$$ right angled at $$B$$. Find the values of  $$a$$ and hence the area of $$\Delta $$ $$ABC$$.
    Solution
    Given that the vertices of the $$\Delta ABC$$ are $$A\left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 2,9 \right) , B\left( { x }_{ 2 },{ y }_{ 2 } \right) =\left( a,5 \right) $$ and $$C\left( { x }_{ 3 },{ y }_{ 3 } \right) =\left( 5,5 \right) and \angle B={ 90 }^{ o }$$. 
    So, $$AC$$ is the hypotenuse.
    $$ \therefore$$ by Pythagoras theorem, we have 
    $$ { AB }^{ 2 }+{ BC }^{ 2 }={ AC }^{ 2 }$$    .........(i)
    Now, by distance formula 
    $$d=\sqrt { { \left( { x }_{ 1 }-{ x }_{ 2 } \right)  }^{ 2 }+{ \left( { y }_{ 1 }-y_{ 2 } \right)  }^{ 2 } } $$ 
    So, $$AB=\sqrt { { \left( { x }_{ 1 }-{ x }_{ 2 } \right)  }^{ 2 }+{ \left( { y }_{ 1 }-y_{ 2 } \right)  }^{ 2 } } =\sqrt { { \left( 2-a \right)  }^{ 2 }+{ \left( 9-5 \right)  }^{ 2 } } =\sqrt { { a }^{ 2 }-4a+20 } $$, 
    $$BC=\sqrt { { \left( { x }_{ 3 }-{ x }_{ 2 } \right)  }^{ 2 }+{ \left( { y }_{ 3 }-y_{ 2 } \right)  }^{ 2 } } =\sqrt { { \left( 5-a \right)  }^{ 2 }+{ \left( 5-5 \right)  }^{ 2 } } =\sqrt { { a }^{ 2 }-10a+25 } $$ and 
    $$AC=\sqrt { { \left( { x }_{ 3 }-{ x }_{ 1 } \right)  }^{ 2 }+{ \left( { y }_{ 3 }-y_{ 1 } \right)  }^{ 2 } } =\sqrt { { \left( 5-2 \right)  }^{ 2 }+{ \left( 5-9 \right)  }^{ 2 } } $$ units $$=\sqrt { 25 } $$ units.
    $$ \therefore$$ by (i), we get
    $${ a }^{ 2 }-4a+20{ +a }^{ 2 }-10a+25=25$$
    $$ \Rightarrow { a }^{ 2 }-7a+10=0$$
    $$ \Rightarrow a=5,2$$ 
    We reject $$a=5$$, since $$B$$ and $$C$$ will coincide in that case and $$\Delta ABC$$ will collapse. 
    So, $$a=2. i.e. AB=\sqrt { { a }^{ 2 }-4a+20 } =\sqrt { 4-8+20 } 3$$ units $$=43$$ units
    $$ BC=\sqrt { { a }^{ 2 }-10a+25 } =\sqrt { 4-20+25 } 3$$ units $$=3$$ units.
    Now,
    We know that the area of the triangle whose vertices are $$\displaystyle (x_{1},y_{1}),(x_{2},y_{2}),$$ and $$(x_{3},y_{3})$$ is $$\cfrac{1}{2}\left | x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1}) +x_{3}(y_{1}-y_{2})\right |$$
    Therefore, required area is $$6$$ square units.
  • Question 13
    1 / -0
    The area of triangle ABC (in sq. units) is :

    Solution
    The area of a triangle is given as:
    Area $$=\dfrac { 1 }{ 2 } \left[ { x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{ 3 }({ y }_{ 1 }-{ y }_{ 2 }) \right] $$
    the given points are $$ A(1,3),~B(-1,0) $$and $$C(4,0)$$
    by Substituting ,
    $$\text{Area} =\dfrac { 1 }{ 2 } \left[ 1(0-0)+(-1)(0-3)+4(3-0) \right] \\ =\dfrac { 1 }{ 2 } \left[ 3+12 \right] =\dfrac { 15 }{ 2 } =7.5$$ 
    $$\therefore$$ Area of the given triangle ABC is $$7.5$$ sq. units
  • Question 14
    1 / -0
    If the point $$A (2, 4)$$ is equidistant from $$P (3, 8)$$ and $$Q (7, y)$$, find the values of $$y$$.
    Solution
    Given $$A(2,4),P(3,8),Q(7,y)$$
    Also given, $$AP=AQ$$
    $$\implies \sqrt { (3-2)^{ 2 }+(8-4)^{ 2 } } =\sqrt { { (7-2) }^{ 2 }+{ (y-4) }^{ 2 } } $$
    $$\implies \sqrt { { 1 }^{ 2 }+{ 4 }^{ 2 } } =\sqrt { {5}^{ 2 }+{ (y-4) }^{ 2 } } $$
    $$\implies \sqrt {1 + 16} =\sqrt {25 +{ (y-4) }^{ 2 } } $$
    $$\implies 17=25+{ (y-4) }^{ 2 }$$
    $$\implies y^{2}-8y+24=0$$

    $$D=b^2-4ac=64-96=-32<0$$
    So, no real values

    Not possible as $$y$$ gives imaginary values
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now