Self Studies

Straight Lines Test 30

Result Self Studies

Straight Lines Test 30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The coordinates of two consecutive vertices $$A$$ and $$B$$ of a regular hexagon $$ABCDEF$$ are $$(1, 0)$$ and $$(2, 0)$$, respectively. The equation of the diagonal $$CE$$ is
    Solution

    Refer to the figure attached. $$ABCDEF$$ is a regular hexagon with side length $$1$$ with other sides above $$x-$$ axis. The coordinates of $$A$$ and $$B$$ are given.

    Length of $$AE$$ can be found using sine rule in triangle $$FEA$$

    $$ \dfrac{\sin {120^{o}}}{AE}=\dfrac{\sin {30^{o}}}{1}$$

    $$ \Rightarrow AE = \sqrt{3}$$

    Since for the given hexagon $$ AE \perp AB$$, we get the coordinates of $$E$$ as $$(1, \sqrt{3})$$....(1)

    Now, $$FC || AB$$ and $$\angle {ECF} = 30^{o}$$

    Hence, slope of $$CE$$ is $$ \tan {120^{o}}$$....(2)

    From (1) and (2) equation of $$CE$$ is $$y- \sqrt 3 = \tan {120^{o}}(x-1)$$

    Simplifying we get

    $$ \sqrt{3}y + x =4$$

    Another hexagon can also be formed with vertices other than $$A$$ and $$B$$ below x-axis. From symmetry, the slope of that line will be $$ \tan {30^{o}}$$

    But options A and B have negative slopes. Hence, only option C is correct.

  • Question 2
    1 / -0
    One diagonal of a square is along the line $$8x - 15 y =0$$ and one of its vertices is $$(1, 2)$$. Then the equations of the sides of the square passing through this vertex are
    Solution
    Let the square be $$ABCD$$ and vertex $$C$$ be $$(1, 2) $$ . Slope of $$BD$$ is $$\dfrac8{15}$$ and angle made by $$BD$$ with $$DC$$ and $$BC$$ is $$45$$$$^{\circ}$$. So let slope of $$DC$$ be $$m$$. Then,
    $$\tan  45^{\circ} = \pm \displaystyle \dfrac{m - \dfrac{8}{15}}{ 1 + \dfrac{8}{15}m}$$
    $$\Rightarrow      (15 + 8m) = \pm (15 m -8)$$
    $$\Rightarrow          m = \dfrac{23}{7}$$ and $$ -\dfrac{7}{23}$$
    Hence, the equations of $$DC$$ and $$BC$$ are
    $$\Rightarrow y -2 = \dfrac{23}{7}  (x-1)$$
    $$\Rightarrow 23x - 7y - 9 =0$$
    and $$y - 2 = - \dfrac{7}{23} (x-1)$$
    $$\Rightarrow 7x + 23 y - 53 = 0$$
  • Question 3
    1 / -0
    The diagonals of a parallelogram $$PQRS$$ are along the lines $$x + 3y = 4$$ and $$6x - 2y = 7$$. Then $$PQRS$$ must be a
    Solution
    $$\textbf{Step 1: Check the slopes of given lines}$$

                    $$\text{We have,}$$

                    $$x + 3y = 4$$ $$\text{and}$$ $$6x - 2y = 7$$
     
                    $$\Rightarrow y = \dfrac{-x}{3} + \dfrac{4}{3}$$ $$\text{and}$$ $$\Rightarrow 6x - 7 = 2y$$
                                                   $$\text{and}$$ $$\Rightarrow y = 3x - \dfrac{7}{2}$$
                    
                    $$\therefore$$ $$\text{Slope}$$ $$\left(m_1\right) = \dfrac{-1}{3}$$           $$\therefore$$ $$\text{Slope}$$ $$\left(m_2\right) = 3$$
                
                    $$\therefore m_1\times m_2 = \dfrac{1}{3}\times -3 = -1$$

    $$\textbf{Step 2: Use the above results and get the required unknown}$$

                    $$\because$$ $$\text{the two lines are perpendicular as the multiplication of slope is -1.}$$

                    $$\therefore$$ $$\text{Diagonals are perpendicular.}$$

    $$\textbf{Hence, PQRS is a rhombus.}$$
  • Question 4
    1 / -0
    The ends of a quadrant of a circle have the coordinates (1, 3) and (3, 1). Then the centre of such a circle is
    Solution
    Let $$O(a,b)$$ be the center of the circle.
    AB is the chord of the circle. Draw $$OM \perp AB$$
    $$\Rightarrow AM=MB$$       
    So, M is the mid-point of AB.
    Coordinates of mid-point M of AB is (2,2)
    In right $$\triangle OMA$$
    $$OA^2=OM^2+MA^2$$
    $$\Rightarrow (a-3)^2+(b-1)^2=2+(a-2)^2+(b-2)^2$$
    $$\Rightarrow a=b$$     ....(1)
    In right $$\triangle OAB$$
    $$AB^2=OA^2+OB^2$$
    $$\Rightarrow 8=2[(a-1)^2+(b-3)^2]$$   ($$\because OA=OB$$)
    $$\Rightarrow a=1\ or\  a=3$$
    So, the center of circle is (1,1)

  • Question 5
    1 / -0
    If four points are $$A(6,3),B(-3,5),C(4,-2)$$ and $$P(x,y),$$ then the ratio of the areas of $$\triangle PBC$$ and $$\triangle ABC$$ is:
    Solution
    Given: Coordinates  of points $$\displaystyle A\left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 6,3 \right) ,B\left( { x }_{ 2 },{ y }_{ 2 } \right) =\left( -3,5 \right) ,C\left( { x }_{ 3, }{ y }_{ 3 } \right) =\left( 4,-2 \right) $$ and $$\displaystyle P\left( x,y \right) .$$

    We know that the area of:
    $$\displaystyle\triangle PBC=\frac { 1 }{ 2 } \left[ x\left( { y }_{ 2 }-{ y }_{ 3 } \right) +{ x }_{ 3 }\left( y-{ y }_{ 2 } \right) +{ x }_{ 2 }\left( { y }_{ 3 }-y \right)  \right] $$

                  $$\displaystyle=\frac { 1 }{ 2 } \left[ x\left( 5+2 \right) +4\left( y-5 \right) -3\left( -2-y \right)  \right] $$ $$\displaystyle=\frac { 1 }{ 2 } \left[ 7x+7y-14 \right] $$

    Similarly, the area of 

    $$\displaystyle\triangle ABC=\frac { 1 }{ 2 } \left[ { x }_{ 1 }\left( { y }_{ 2 }-{ y }_{ 3 } \right) +{ x }_{ 2 }\left( { y }_{ 3 }-{ y }_{ 1 } \right)  \right] +{ x }_{ 3 }\left( { y }_{ 1 }-{ y }_{ 2 } \right) $$

                  $$\displaystyle=\dfrac{1}{2}[6\left( 5+2 \right) -3\left( -2-3 \right) +4\left( 3-5 \right)] =\dfrac{49}{2}$$

    Therefore, the ratio of the areas of $$\triangle PAB$$ and $$\triangle ABC$$

    $$\displaystyle=\frac { 7x+7y-14 }{ 49 } =\frac { 7\left( x+y-2 \right)  }{ 49 } =\frac { x+y-2 }{ 7 } $$
  • Question 6
    1 / -0
    $$\mathrm{P}_{1},\ \mathrm{P}_{2},\ldots\ldots.,\ \mathrm{P}_{\mathrm{n}}$$ are points on the line $$y=x$$ lying in the positive quadrant such that $$\mathrm{O}\mathrm{P}_{\mathrm{n}}=n\cdot\mathrm{O}\mathrm{P}_{\mathrm{n}-1}$$, where $$\mathrm{O}$$ is the origin. If $$\mathrm{O}\mathrm{P}_1=1$$ and the coordinates of $$\mathrm{P}_{\mathrm{n}}$$ are $$(2520\sqrt{2},2520\sqrt{2})$$, then $$n$$ is equal to
    Solution
    $$P_1,P_2.P_3....$$ are points on line $$y=x$$
    $$OP_1=1$$
    Let  $$P_1=(x,x$$)
    But $$ OP_1=1\Rightarrow 2x^2=1\Rightarrow x^2=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{\sqrt2}$$
          So $$P_1=(\dfrac{1}{\sqrt2},\dfrac{1}{\sqrt2})$$
    $$OP_2=2\times OP_1=2\Rightarrow 2x^2=4\Rightarrow x=\sqrt2\Rightarrow P_2=(\sqrt2,\sqrt2)$$
    $$OP_3=2\times 3=6\Rightarrow2x^2=6^2\Rightarrow x=3\sqrt2 \Rightarrow P_3=(3\sqrt2,3\sqrt2)$$
    ....coninuing  this way  get 
    $$OP_7=7\times 720=5040\Rightarrow  2x^2=5040\times 5040\Rightarrow x^2=\Rightarrow x=2520\sqrt2\Rightarrow P_7=(2520\sqrt2,2520\sqrt2)$$
    Comparing with given point  we get $$n=7$$.

  • Question 7
    1 / -0
    If $$A(-2,4)$$, $$B(0,0)$$ and $$C(4,2)$$ are the vertices of a $$\Delta ABC$$, then find the length of median through the vertex A.
    Solution
    A median of a triangle is a line segment that joins the vertex of a triangle to the midpoint of the opposite side.

    Mid point of two points $$ { (x }_{ 1 },{ y }_{ 1 }) $$ and $$ { (x }_{ 2 },{ y }_{

    2 }) $$ is  calculated by the formula $$ \left( \frac { { x }_{ 1 }+{ x

    }_{ 2 } }{ 2 } ,\frac { { y }_{ 1 }+y_{ 2 } }{ 2 }  \right) $$

    Using this formula,

    mid point of BC $$ D = \left( \frac { 0  + 4}{ 2 } ,\frac { 0 + 2 }{ 2 }  \right)

    \quad =\quad (2,1) $$

    Distance between two points $$

    \left( { x }_{ 1 },{ y }_{ 1 } \right) $$ and $$ \left( { x }_{ 2 },{ y }_{ 2 }

    \right) $$ can be calculated using the formula $$ \sqrt { \left( { x }_{ 2 }-{

    x }_{ 1 } \right) ^{ 2 }+\left( { y }_{ 2 }-{ y }_{ 1 } \right) ^{ 2 } } $$

    Length of the median A$$ (-2,4) $$ and D $$ (2,1) = \sqrt { \left( 2 + 2

    \right) ^{ 2 }+\left( 1 - 4 \right) ^{ 2 } } = \sqrt { 16 + 9 } = \sqrt { 25 } 

    = 5 $$

  • Question 8
    1 / -0
    The vertices of a triangle are $$A(3,4)$$, $$B(7,2)$$ and $$C(-2, -5)$$. Find the length of the median through the vertex A.
    Solution

    A median of a triangle is a line segment that joins the

    vertex of a triangle to the midpoint of the opposite side.

    Mid point of two points $$ { (x }_{ 1 },{ y }_{ 1 }) $$ and $$ { (x }_{ 2 },{ y

    }_{ 2 }) $$ is  calculated by the formula $$ \left( \frac { { x }_{ 1 }+{

    x }_{ 2 } }{ 2 } ,\frac { { y }_{ 1 }+y_{ 2 } }{ 2 }  \right) $$


    Since AD is the median, this means, D is the mid point of BC.

    Using this formula, mid point of BC $$= \left( \frac { 7- 2 }{ 2 } ,\frac { 2 - 5 }{ 2 } 

    \right) = (\dfrac {5}{2},\dfrac {-3}{2}) $$

    Distance between two points $$

    \left( { x }_{ 1 },{ y }_{ 1 } \right) $$ and $$ \left( { x }_{ 2 },{ y }_{ 2 }

    \right) $$ can be calculated using the formula $$ \sqrt { \left( { x }_{ 2 }-{

    x }_{ 1 } \right) ^{ 2 }+\left( { y }_{ 2 }-{ y }_{ 1 } \right) ^{ 2 } } $$

    Hence, length of AD $$ = \sqrt { \left( \dfrac { 5 }{ 2 } -3 \right) ^{ 2 }+\left( \dfrac { -3 }{ 2 } -4 \right) ^{ 2 } } =\sqrt { \dfrac { 1 }{ 4 } +\dfrac { 121 }{ 4 }  } =\sqrt { \dfrac { 122 }{ 4 }  } =\dfrac { \sqrt { 122 }  }{ 2 }  $$


  • Question 9
    1 / -0

    Directions For Questions

    The area of a triangle whose vertices are $$\displaystyle \left( { x }_{ 1 },{ y }_{ 1 } \right) ,\left( { x }_{ 2 },{ y }_{ 2 } \right) $$ and $$\displaystyle \left( { x }_{ 3 },{ y }_{ 3 } \right) $$ is given by $$\displaystyle \Delta =\frac { 1 }{ 2 } \left| { x }_{ 1 }\left( { y }_{ 2 },{ y }_{ 3 } \right) +{ x }_{ 2 }\left( { y }_{ 3 },{ y }_{ 1 } \right) +{ x }_{ 3 }\left( { y }_{ 1 },{ y }_{ 2 } \right)  \right| $$. The points $$\displaystyle \left( { x }_{ 1 },{ y }_{ 1 } \right) ,\left( { x }_{ 2 },{ y }_{ 2 } \right) $$ and $$\displaystyle \left( { x }_{ 3 },{ y }_{ 3 } \right) $$ are collinear of $$\displaystyle \Delta =0$$

    ...view full instructions

    Determine the area of the triangle whose vertices are $$\displaystyle \left( \frac { 1 }{ 2 } ,\frac { -1 }{ 2 }  \right) ,\left( 2,\frac { -1 }{ 2 }  \right) $$ and $$\displaystyle \left( 2,\frac { \sqrt { 3 } -1 }{ 2 }  \right) $$.
    Solution

  • Question 10
    1 / -0
    Find the equation of the line that passes through the points $$(-1,0)$$ and $$(-4,12)$$
    Solution
    Since slope of line passing through two points $$\left( { x }_{ 1 },{ y }_{ 1 } \right)$$ and $$\left( { x }_{ 2 },{ y }_{ 2 } \right)$$ is $${ m }=\dfrac { { y }_{ 2 }-{ y }_{ 1 } }{ { x }_{ 2 }-{ x }_{ 1 } }$$
    We now find the slope of the line passing through the points $$(-1,0)$$ and $$(-4,12)$$ as shown below:
    $${ m }=\dfrac { 12-0 }{ -4-(-1) } =\dfrac { 12 }{ -3 } =-4$$
    Therefore, the slope of the line is $$-4$$.
    Now use the slope and either of the two points to find the $$y$$-intercept.
    $$y=mx+b$$
    $$0=(-4)(-1)+b$$
    $$0=4+b$$
    $$b=-4$$
    Write the equation in slope intercept form as:
    $$y=mx+b$$
    $$y=(-4)x-4$$
    $$y=-4x-4$$
    $$y+4x=-4$$
    Hence, the equation of the line is $$y+4x=-4$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now