Self Studies

Limits and Derivatives Test - 13

Result Self Studies

Limits and Derivatives Test - 13
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\displaystyle \lim_{x\rightarrow 0}\frac{e^{x}-e^{\sin x}}{2(x-\sin x)}=$$
    Solution
    We simplify the given expression as,

    $$\displaystyle\lim_{x \rightarrow 0}     \dfrac{{e}^{sin x}({e}^{x - sin x} - 1)}{2(x - sin x)} $$

    Let $$x - sin x = y$$

    As $$ x \rightarrow 0 \text{ so  does  y } \rightarrow 0 $$

    Hence, the question transforms into

    $$(\displaystyle\lim_{x \rightarrow 0}  \dfrac{{e}^{sin x}}{2}) \times (\lim _{y \rightarrow  0}\dfrac{{e}^{y} - 1}{y}) $$

    $$=  \dfrac{1}{2}  \times 1 $$

    $$=  \dfrac{1}{2} $$
  • Question 2
    1 / -0

    $$\displaystyle \lim_{x \rightarrow\frac{\pi}{2}}\displaystyle \dfrac{cosecx-\cot x}{x}$$=
    Solution
    $$\displaystyle \lim _{ x\rightarrow \dfrac { \pi  }{ 2 }  } \dfrac { \csc { x } -\cot  x }{ x } $$
    $$\displaystyle =\lim _{ x\rightarrow \dfrac { \pi  }{ 2 }  } \dfrac { 1-\cos  x }{ x\sin { x }  } $$
    $$\displaystyle =\dfrac{2}{\pi}$$
  • Question 3
    1 / -0

    $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{1-\cos^{3}x}{x\sin 2x}$$=
    Solution
    $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{1-\cos^{3}x}{x\sin 2x}=\lim_{x\rightarrow 0}\displaystyle \frac{(1-\cos x)(1+\cos x+\cos^2x)}{x\sin 2x}$$

    $$=\displaystyle \lim_{x\rightarrow 0}\displaystyle \dfrac{2\sin^2\frac{x}{2}(1+\cos x+\cos^2x)}{4x\cos x\sin\dfrac{x}{2}\cos\dfrac{x}{2}}=\lim_{x\rightarrow 0}\displaystyle \dfrac{\sin\dfrac{x}{2}(1+\cos x+\cos^2x)}{4 \times \dfrac x2\cos \tfrac x2 \times \cos x } =\frac{3}{4}$$...... As$$\left \{ \lim_{\tfrac x2 \to0} \dfrac {\sin \tfrac x2}{\tfrac x2}=0 \right \}$$
  • Question 4
    1 / -0
    Solve : $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \dfrac{\sin x\sin\left(\dfrac{\pi}{3}+x\right)\sin\left(\dfrac{\pi}{3}-x\right)}{x}$$
    Solution
    Solve : $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \dfrac{\sin x\sin\left(\dfrac{\pi}{3}+x\right)\sin\left(\dfrac{\pi}{3}-x\right)}{x}$$
    $$=\underset{x\rightarrow0}\lim\dfrac{\sin x}{x}\times\underset{x\rightarrow 0}\lim\sin(\dfrac{\pi}{3}+x)\times\underset{x\rightarrow 0}\lim\sin(\dfrac{\pi}{3}-x)$$
    $$=1\times\sin\dfrac{\pi}{3}\times\sin\dfrac{\pi}{3}$$
    $$=1\times\dfrac{\sqrt3}{2}\times\dfrac{\sqrt3}{2}$$
    $$=\dfrac34$$
  • Question 5
    1 / -0
    $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{(1-\cos 2x)\sin 5x}{x^{2}\sin 3x}=$$
    Solution
    Using, $$1 - cos 2x = 2{sin}^{2} x $$,
    The expression transforms to,
    $$lim _{ x \rightarrow 0  }        \dfrac{ 2{sin}^{2} xsin 5x}{{x}^{2}sin 3x} $$
    Rewriting the expression in a different form,
    $$lim _{ x \rightarrow 0 }          \dfrac{2{sin}^{2} x}{{x}^{2}} \times \dfrac{sin 5x}{5x} \times \dfrac{3x}{sin 3x} \times \dfrac{5}{3} $$
    Therefore, the limit to the expression is $$ \dfrac{10}{3} $$
    Hence, option 'A' is correct.
  • Question 6
    1 / -0
    $$\displaystyle \lim_{x\rightarrow 0}\frac{1-\cos x}{x\log(1+x)}=$$
    Solution
    $$\displaystyle \lim_{x\rightarrow 0}\dfrac{1-\cos x}{x\log(1+x)}$$

    $$\displaystyle\lim _{ x\rightarrow 0 } \displaystyle \dfrac { 2\sin ^{ 2 }{ \dfrac { x }{ 2 }  }  }{ x\log  (1+x) }$$

    $$ =\displaystyle\lim _{ x\rightarrow 0 }\displaystyle \dfrac { 2\displaystyle\dfrac { \sin ^{ 2 }{ \dfrac { x }{ 2 }  }  }{ { \left(\displaystyle\dfrac { x }{ 2 } \right) }^{ 2 } } \times \dfrac { 1 }{ 4 }  }{\displaystyle \dfrac { 1 }{ x } \log  (1+x) } $$

    $$=\displaystyle\lim _{ x\rightarrow 0 }\displaystyle \dfrac { \displaystyle\dfrac { 1 }{ 2 }  }{ \dfrac{\log{ (1+x) }}{ x } } =\dfrac{1}{2}$$

  • Question 7
    1 / -0
    $$\displaystyle \lim_{x\rightarrow \dfrac{\pi }{4}}\displaystyle \frac{\sec x.\tan(4x-\pi)}{\sin(4x-\pi)}$$=
    Solution
    $$\displaystyle \lim_{x\rightarrow \dfrac{\pi }{4}}\displaystyle \dfrac{\sec x.\tan(4x-\pi)}{\sin(4x-\pi)}$$
    $$\displaystyle =\lim _{ x\rightarrow \dfrac { \pi  }{ 4 }  } \dfrac { \sec  x.\dfrac { \tan  (4x-\pi ) }{ (4x-\pi ) }  }{ \dfrac { \sin  (4x-\pi ) }{ (4x-\pi ) }  }$$
    $$ =\sqrt { 2 } $$
  • Question 8
    1 / -0

    $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{x\tan 2x-2x\tan x}{(1-\cos 2x)^{2}}$$=
    Solution
    $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \dfrac{x\tan 2x-2x\tan x}{(1-\cos 2x)^{2}}$$

    $$\displaystyle =\lim _{ x\rightarrow 0 }{ \dfrac { x\dfrac { 2\tan { x }  }{ 1-\tan ^{ 2 }{ x }  } -2x\tan  x }{\left(1-\dfrac { 1-\tan ^{ 2 }{ x }  }{ 1+\tan ^{ 2 }{ x }  } \right)^{ 2 } }  } $$

    $$\displaystyle =\lim _{ x\rightarrow 0 }{ \dfrac { 2x\tan ^{ 3 }{ x }  }{ 4\tan ^{ 4 }{ x }  }}$$

    $$\displaystyle =\lim _{ x\rightarrow 0 }{ \dfrac { 2x }{ 4\tan { x }  } }  $$

    $$=\displaystyle \dfrac { 1 }{ 2 } $$
  • Question 9
    1 / -0
    $$\displaystyle \lim_{x\rightarrow \frac{\pi }{6}}\frac{3\sin x-\sqrt{3}\cos x}{6x-\pi }=$$
    Solution
    $$\displaystyle \lim_{x\rightarrow \dfrac{\pi }{6}}\frac{3\sin x-\sqrt{3}\cos x}{6x-\pi }=2\sqrt{3}\lim_{x\rightarrow \dfrac{\pi }{6}}\dfrac{\dfrac{\sqrt{3}}{2}\sin x-\dfrac{1}{2}\cos x}{6x-\pi }$$
    $$=\displaystyle \dfrac{2\sqrt{3}}{6}\lim_{x\rightarrow \dfrac{\pi }{6}}\dfrac{\cos\dfrac{\pi}{6}\sin x-\sin\dfrac{\pi}{6}\cos x}{x-\dfrac{\pi}{6} }$$
    $$=\displaystyle \dfrac{1}{\sqrt{3}}\lim_{x\rightarrow \dfrac{\pi }{6}}\dfrac{\sin \left(x-\dfrac{\pi}{6}\right)}{\left(x-\dfrac{\pi}{6} \right)}=\dfrac{1}{\sqrt{3}}$$
  • Question 10
    1 / -0
    $$\displaystyle \lim_{x\rightarrow 0}\frac{tan x^{0}}{x}=$$
    Solution
    $$\displaystyle \lim_{x\rightarrow 0}\dfrac{tan x^{0}}{x}$$
    $$\displaystyle={ \dfrac { \pi  }{ 180 }  }\lim _{ x\rightarrow 0 } \dfrac { \tan { (\dfrac { \pi  }{ 180 } x) }  }{ { (\dfrac { \pi  }{ 180 } ) }x } $$
    $$\displaystyle={ \dfrac { \pi  }{ 180 }  }$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now