Self Studies

Limits and Deri...

TIME LEFT -
  • Question 1
    1 / -0

    $$\displaystyle \lim_{x\rightarrow 0}\frac{e^{x}-e^{\sin x}}{2(x-\sin x)}=$$

  • Question 2
    1 / -0


    $$\displaystyle \lim_{x \rightarrow\frac{\pi}{2}}\displaystyle \dfrac{cosecx-\cot x}{x}$$=

  • Question 3
    1 / -0


    $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{1-\cos^{3}x}{x\sin 2x}$$=

  • Question 4
    1 / -0

    Solve : $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \dfrac{\sin x\sin\left(\dfrac{\pi}{3}+x\right)\sin\left(\dfrac{\pi}{3}-x\right)}{x}$$

  • Question 5
    1 / -0

    $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{(1-\cos 2x)\sin 5x}{x^{2}\sin 3x}=$$

  • Question 6
    1 / -0

    $$\displaystyle \lim_{x\rightarrow 0}\frac{1-\cos x}{x\log(1+x)}=$$

  • Question 7
    1 / -0

    $$\displaystyle \lim_{x\rightarrow \dfrac{\pi }{4}}\displaystyle \frac{\sec x.\tan(4x-\pi)}{\sin(4x-\pi)}$$=

  • Question 8
    1 / -0


    $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{x\tan 2x-2x\tan x}{(1-\cos 2x)^{2}}$$=

  • Question 9
    1 / -0

    $$\displaystyle \lim_{x\rightarrow \frac{\pi }{6}}\frac{3\sin x-\sqrt{3}\cos x}{6x-\pi }=$$

  • Question 10
    1 / -0

    $$\displaystyle \lim_{x\rightarrow 0}\frac{tan x^{0}}{x}=$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now