Self Studies

Limits and Derivatives Test - 21

Result Self Studies

Limits and Derivatives Test - 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Evaluate $$\displaystyle \lim_{n\rightarrow \infty }\left [ \left ( 1+\frac{1}{n^{2}} \right )\left ( 1+\frac{2^{2}}{n^{2}} \right )\left ( 1+\frac{3^{2}}{n^{2}} \right )......\left ( 1+\frac{n^{2}}{n^{2}} \right ) \right ]^{1/n}$$
    Solution
    Let $$\displaystyle S=\frac { lim }{ n\rightarrow \infty  } { \left[ \left( 1+\frac { 1 }{ { n }^{ 2 } }  \right) \left( 1+\frac { { 2 }^{ 2 } }{ { n }^{ 2 } }  \right) ...\left( 1+\frac { { n }^{ 2 } }{ { n }^{ 2 } }  \right)  \right]  }^{ \frac { 1 }{ n }  }$$

    $$\displaystyle \Rightarrow logS=\frac { lim }{ n\rightarrow \infty  } \frac { 1 }{ n } \sum _{ r=1 }^{ n }{ log } \left( 1+\frac { { r }^{ 2 } }{ { n }^{ 2 } }  \right) $$

    $$\displaystyle =\int _{ 0 }^{ 1 }{ log } \left( 1+{ x }^{ 2 } \right) dx.=\left( xlog\left( 1+{ x }^{ 2 } \right)  \right) _{ 0 }^{ 1 }-\int _{ 0 }^{ 1 }{ \frac { { 2x }^{ 2 } }{ 1+{ x }^{ 2 } } dx } $$

    $$\displaystyle \Rightarrow log\left( \frac { S }{ 2 }  \right) =2\left[ \int _{ 0 }^{ 1 }{ \frac { { dx } }{ 1+{ x }^{ 2 } }  } -\int _{ 0 }^{ 1 }{ dx }  \right] =2\left[ \frac { \pi  }{ 4 } -1 \right] =\frac { \pi -4 }{ 2 } $$

    $$\displaystyle \Rightarrow S=2{ e }^{ \left( \frac { \pi -4 }{ 2 }  \right)  }$$
  • Question 2
    1 / -0
    If $$\displaystyle y=\left | \cos x \right |+\left | \sin x \right |$$ then $$\displaystyle \frac{dy}{dx}$$ at $$x=\dfrac{2\pi }{3}$$ is:
    Solution
    In the neighborhood of $$\:x=\dfrac{2\pi}3$$
    $$\Rightarrow  y=-\cos\:x+\sin\:x$$
    $$\Rightarrow \left ( \cfrac{dy}{dx} \right )=\sin\:x+\cos\:x$$
    Thus at$$\:x=\dfrac{2\pi}3$$
    $$\cfrac{dy}{dx}=\dfrac{\sqrt{3}}{2}-\dfrac{1}{\sqrt{2}}=\dfrac{1}{2}\left ( \sqrt{3}-1 \right )$$
  • Question 3
    1 / -0
    $$\displaystyle \frac{d}{d\theta }\left ( \tan ^{-1}\left ( \frac{1-\cos \theta }{\sin \theta } \right ) \right )$$ equals if $$\displaystyle-\pi <\theta <\pi $$
    Solution
    $$\dfrac{1-\cos \left(x\right)}{\sin \left(x\right)}$$
    Let $$u=\dfrac{x}{2}$$
    $$=\dfrac{-\left(1-2\sin ^2\left(u\right)\right)+1}{2\cos \left(u\right)\sin \left(u\right)}$$
    $$=\dfrac{\sin \left(u\right)}{\cos \left(u\right)}$$
    $$=\tan \left(u\right)=tan(\dfrac{x}{2})$$
    So,
    $$\frac{d}{dθ}\left(\arctan \left(\frac{1-\cos \left(θ\right)}{\sin \left(θ\right)}\right)\right)=\frac{d}{dθ}\left(\arctan \left(tan\frac{\theta}{2}\right)\right)=\dfrac{d}{d\theta}(\dfrac{\theta}{2})=\dfrac{1}{2}$$
  • Question 4
    1 / -0
    If $$y = \displaystyle \tan^{-1}\left (\cot x \right ) +\cot^{-1}(\tan x),$$ then $$\displaystyle \frac{dy}{dx}$$ is equal to-
    Solution
    $$\dfrac{d}{dx}\left(\tan^{-1} \left(\cot \left(x\right)\right)+\cot^{-1} \left(\tan \left(x\right)\right)\right)$$
    $$=\dfrac{d}{dx}\left(\tan^{-1} \left(\cot \left(x\right)\right)\right)+\dfrac{d}{dx}\left(\cot^{-1} \left(\tan \left(x\right)\right)\right)$$
    $$=-\dfrac{\csc ^2\left(x\right)}{\cot ^2\left(x\right)+1}-\dfrac{\sec ^2\left(x\right)}{\tan ^2\left(x\right)+1}$$
    $$=-\dfrac{2\csc ^2\left(x\right)\sec ^2\left(x\right)}{\left(\tan ^2\left(x\right)+1\right)\left(\cot ^2\left(x\right)+1\right)}=-2\dfrac{csc^2(x)sec^2{(x)}}{csc^2{(x)}sec^2{(x)}}=-2$$
  • Question 5
    1 / -0
    $$\displaystyle \frac{d}{dx}\left ( \tan ^{-1}\left ( \frac{\sqrt{x}-x}{1+x^{3/2}} \right ) \right )$$ equals $$\displaystyle ($$for $$x\geq 0)$$
    Solution
    Let,  $$\displaystyle y=\tan ^{-1}\left ( \frac{\sqrt{x}-x}{1+x^{3/2}} \right )$$
    $$\displaystyle y=\tan ^{-1}(\sqrt{x})-\tan ^{-1}x$$
    $$\therefore \displaystyle \frac{dy}{dx}=\frac{1}{(1+x)}\times \frac{1}{2\sqrt{x}}-\frac{1}{1+x^{2}}$$
  • Question 6
    1 / -0
    If $$y = sec  x^0$$ then $$\displaystyle \frac{dy}{dx} = $$
    Solution
    Give $$y = sec  x^0$$
    $$= \displaystyle sec \frac{x \pi}{180^o} \left ( \because x^o = \displaystyle \frac{x \pi}{180^o} radians \right )$$
    $$\therefore \displaystyle \frac{dy}{dx} = \frac{\pi}{180^o} sec  x^o  tan  x^o$$
  • Question 7
    1 / -0
    Let $$\displaystyle y=(1+x^{2})\tan^{-1}(x-x)$$ and $$\displaystyle f(x)=\frac1{2x}\frac {dy}{dx},$$ then $$f(x)+\cot^{-1}x$$ is equal to
    Solution
    $$\displaystyle y=(1+x^{2})\tan^{-1}(x-x)$$
    $$\Rightarrow \displaystyle \dfrac {dy}{dx}=2x\tan^{-1}x+(1+x^2).\dfrac{1}{1+x^2}-1=2x\tan^{-1}x$$
    $$\displaystyle\Rightarrow  f(x)= \dfrac {\dfrac {dy}{dx}}{2x}=\tan^{-1}x$$
    $$\therefore \displaystyle f(x)+\cot^{-1}x= \tan^{-1}+\cot^{-1}x=\dfrac {\pi}{2}$$
  • Question 8
    1 / -0
    $$\displaystyle \lim_{x \rightarrow \infty} (\sqrt{x^2 + 8x + 3} - \sqrt{x^2 + 4x + 3}) =$$
    Solution
    Let $$x = \displaystyle \dfrac{1}{y}$$ then as $$x \rightarrow \infty \Rightarrow y \rightarrow 0$$
    $$\therefore \displaystyle  \lim_{y \rightarrow 0} \left ( \sqrt{\dfrac{1}{y^2} + \dfrac{8}{y} + 3} - \sqrt{\dfrac{1}{y^2} + \dfrac{4}{y} + 3} \right )$$
    $$\therefore \displaystyle \lim_{y \rightarrow 0}\frac{\sqrt{3y^2 + 8y + 1} - \sqrt{3y^2 + 4y + 1}}{y}$$
    $$= \displaystyle \lim_{y \rightarrow 0} \left ( \dfrac{\displaystyle \dfrac{1}{2} (3y^2 + 8y + 1)^{-1/2} (6y + 8) - \dfrac{1}{2} (5y^2 + 4y + 1)^{-1/2} (6y + 4)}{1} \right )$$
    $$= \displaystyle  \lim_{y \rightarrow 0} \left ( \frac{8}{2} - 2 \right ) = 2$$
  • Question 9
    1 / -0
    The limit of $$x\sin { \left( { e }^{ \frac { 1 }{ x }  } \right)  } $$ as $$x\rightarrow 0$$
    Solution
    $$\displaystyle \lim _{ x\rightarrow 0 }{ x\sin { { e }^{ (1/x) } }  } $$
    LHL$$=f(0-0)=\displaystyle \lim _{ x\rightarrow 0 }{ (-h)\sin { { e }^{ (-1/h) } }  } $$
    $$=-0\times \sin { \left( { e }^{ -\infty  } \right)  } $$
    $$=-0\times \sin { (0)=0 } $$
    $$=0\times$$ (a finite number between $$-1$$ to $$+1$$) $$\quad \left( \because -1\le \sin { x } \le 1 \right) $$
    $$\because$$ LHL$$=$$RHL
    $$\because$$ $$\displaystyle \lim _{ x\rightarrow 0 }{ x\sin { { e }^{ (1/x) } }  } $$ exist and equal to $$0$$
  • Question 10
    1 / -0
    If $$r=\left[2\phi +\cos^2\left(2\phi +\dfrac{\pi}4\right)\right]^{\tfrac12},$$ then what is the value of the derivative of $$\dfrac{dr}{d\phi}$$ at $$\phi=\dfrac{\pi}4?$$
    Solution
    $$r=\sqrt { 2\phi +{ cos }^{ 2 }\left( 2\phi +\dfrac { \pi  }{ 4 }  \right)  } $$
    $$\phi =\dfrac { \pi  }{ 4 } $$

    $$\Rightarrow r=\sqrt { 2\times \dfrac { \pi  }{ 4 } +{ cos }^{ 2 }\left( 2\times \dfrac { \pi  }{ 4 } +\dfrac { \pi  }{ 4 }  \right)  } $$

    $$=\sqrt { \dfrac { \pi  }{ 2 } +{ cos }^{ 2 }\left( \dfrac { 3\pi  }{ 4 }  \right)  } $$

    $$r\left( \dfrac { \pi  }{ 4 }  \right) =\sqrt { \dfrac { \pi  }{ 2 } +\dfrac { 1 }{ 2 }  } =\dfrac { \sqrt { \pi +1 }  }{ \sqrt { 2 }  } $$

    $${ r }^{ 2 }=2\phi +{ cos }^{ 2 }\left( 2\phi +\dfrac { \pi  }{ 4 }  \right) $$

    Differentiate w.r.t $$\phi $$

    $$\Rightarrow 2r\dfrac { dr }{ d\phi  } =2+2\cos { \left( 2\phi +\dfrac { \pi  }{ 4 }  \right)  } \left( -\sin { \left( 2\phi +\dfrac { \pi  }{ 4 }  \right)  }  \right) \left( +2 \right) $$

    $$2r\left( \dfrac { \pi  }{ 4 }  \right) \dfrac { dr }{ d\phi  } =2+2\cos { \dfrac { 3\pi  }{ 4 } \left( -\sin { \left( \dfrac { 3\pi  }{ 4 }  \right)  }  \right)  } \left( +2 \right) $$

    $$=2+2\times \dfrac { -1 }{ \sqrt { 2 }  } \times \dfrac { -1 }{ \sqrt { 2 }  } \times \left( +2 \right) $$

    $$2\times \left( \sqrt { \dfrac { \pi +1 }{ 2 }  }  \right) \times \dfrac { dr }{ d\phi  } =4$$

    $$\dfrac { dr }{ d\phi  } =\dfrac { 2\sqrt { 2 }  }{ \sqrt { \pi +1 }  } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now