Self Studies

Limits and Deri...

TIME LEFT -
  • Question 1
    1 / -0

    Evaluate $$\displaystyle \lim_{n\rightarrow \infty }\left [ \left ( 1+\frac{1}{n^{2}} \right )\left ( 1+\frac{2^{2}}{n^{2}} \right )\left ( 1+\frac{3^{2}}{n^{2}} \right )......\left ( 1+\frac{n^{2}}{n^{2}} \right ) \right ]^{1/n}$$

  • Question 2
    1 / -0

    If $$\displaystyle y=\left | \cos x \right |+\left | \sin x \right |$$ then $$\displaystyle \frac{dy}{dx}$$ at $$x=\dfrac{2\pi }{3}$$ is:

  • Question 3
    1 / -0

    $$\displaystyle \frac{d}{d\theta }\left ( \tan ^{-1}\left ( \frac{1-\cos \theta }{\sin \theta } \right ) \right )$$ equals if $$\displaystyle-\pi <\theta <\pi $$

  • Question 4
    1 / -0

    If $$y = \displaystyle \tan^{-1}\left (\cot x \right ) +\cot^{-1}(\tan x),$$ then $$\displaystyle \frac{dy}{dx}$$ is equal to-

  • Question 5
    1 / -0

    $$\displaystyle \frac{d}{dx}\left ( \tan ^{-1}\left ( \frac{\sqrt{x}-x}{1+x^{3/2}} \right ) \right )$$ equals $$\displaystyle ($$for $$x\geq 0)$$

  • Question 6
    1 / -0

    If $$y = sec  x^0$$ then $$\displaystyle \frac{dy}{dx} = $$

  • Question 7
    1 / -0

    Let $$\displaystyle y=(1+x^{2})\tan^{-1}(x-x)$$ and $$\displaystyle f(x)=\frac1{2x}\frac {dy}{dx},$$ then $$f(x)+\cot^{-1}x$$ is equal to

  • Question 8
    1 / -0

    $$\displaystyle \lim_{x \rightarrow \infty} (\sqrt{x^2 + 8x + 3} - \sqrt{x^2 + 4x + 3}) =$$

  • Question 9
    1 / -0

    The limit of $$x\sin { \left( { e }^{ \frac { 1 }{ x }  } \right)  } $$ as $$x\rightarrow 0$$

  • Question 10
    1 / -0

    If $$r=\left[2\phi +\cos^2\left(2\phi +\dfrac{\pi}4\right)\right]^{\tfrac12},$$ then what is the value of the derivative of $$\dfrac{dr}{d\phi}$$ at $$\phi=\dfrac{\pi}4?$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now