Self Studies

Limits and Derivatives Test - 33

Result Self Studies

Limits and Derivatives Test - 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    For $$x>y$$, $$\displaystyle\lim_{x\rightarrow 0}{\left[\left(\sin{x}\right)^{1/x}+\left(\cfrac{1}{x}\right)^{\sin{x}}\right]}$$ is :
  • Question 2
    1 / -0
    If $$f : R \rightarrow (0, \infty)$$ is an increasing function and if $$\displaystyle\lim_{x \rightarrow 2018} \dfrac{f(3x)}{f(x)} = 1$$, then $$\displaystyle\lim_{x \rightarrow 2018} \dfrac{f(2x)}{f(x)}$$ is equal to 
    Solution
    Given $$f : R \rightarrow (0, \infty)$$ is an increasing function.
    And $$\underset{x \rightarrow 2018}{\lim} \dfrac{f(3x)}{f(x)} = 1$$
    So, $$\underset{x \rightarrow 2018}{\lim} f(3x) = \underset{x \rightarrow 2018}{\lim} f(x)$$
    $$\Rightarrow f(x) = $$ constant.
    Therefore,$$ \underset{x \rightarrow 2018}{\lim} \dfrac{f(2x)}{f(x)} = 1$$
  • Question 3
    1 / -0
    If $$f$$ is differentiable at $$x = 1$$ and $$\underset{h \rightarrow 0}{\lim} \dfrac{1}{h} f (1 + h) = 5, f'(1) = $$
    Solution
    $$f'(1)=\underset{h\rightarrow 0}{lim} \dfrac{f(1+h)-f(1)}{h}$$; function is differentiable.
     
    and $$\underset{h\rightarrow 0}{lim} \dfrac{f(1+h)}{h}=5$$ [Given function is continuous]
    $$\Rightarrow f(1)=0$$

    Hence, $$f'(1)=\underset{h\rightarrow 0}{lim} \dfrac{f(1+h)}{h}=5$$
  • Question 4
    1 / -0
    If $$y=\sqrt{\sin x+\sqrt{\sin x+\sqrt{\sin x+}}}.....\infty$$ then $$\dfrac{dy}{dx}=?$$
    Solution

  • Question 5
    1 / -0
    If $$y=(\tan x)^{\cot x}$$ then $$\dfrac{dy}{dx}=?$$
    Solution

  • Question 6
    1 / -0
    If $$x=a(\cos\theta+\theta\sin\theta)$$ and $$y=a(\sin\theta-\theta\cos\theta)$$ then $$\dfrac{dy}{dx}=?$$
    Solution

  • Question 7
    1 / -0
    If $$x=a\sec\theta, y=b\tan\theta$$ then $$\dfrac{dy}{dx}=$$
    Solution

  • Question 8
    1 / -0
    If $$y=\sqrt{x\sin x}$$ then $$\dfrac{dy}{dx}=?$$
    Solution

  • Question 9
    1 / -0
    If $$y=\sqrt{\dfrac{1+\sin x}{1-\sin x}}$$ then $$\dfrac{dy}{dx}=?$$
    Solution
    $$y=\left\{\dfrac{1+\cos \left(\dfrac{\pi}{2}-x\right)}{1-\cos \left(\dfrac{\pi}{2}-x\right)}\right\}^{\dfrac{1}{2}}=\left\{\dfrac{2\cos^2\left(\dfrac{\pi}{4}-\dfrac{x}{2}\right)}{2\sin^2\left(\dfrac{\pi}{4}-\dfrac{x}{2}\right)}\right\}^{\dfrac{1}{2}}=\cot\left(\dfrac{\pi}{4}-\dfrac{x}{2}\right)$$.
    $$\Rightarrow \dfrac{dy}{dx}=-\csc^2\left({\dfrac{\pi}{4}-\dfrac{x}{2}}\right)\times\dfrac{dy}{dx}\left({\dfrac{\pi}{4}-\dfrac{x}{2}}\right)$$
    $$\therefore \dfrac{dy}{dx}=\dfrac12\csc^2\left({\dfrac{\pi}{4}-\dfrac{x}{2}}\right)$$
  • Question 10
    1 / -0
    The value of $$ \displaystyle \lim _{x \rightarrow \pi} \dfrac{1+\cos ^{3} x}{\sin ^{2} x} $$ is
    Solution
    We have $$ \displaystyle \lim _{x \rightarrow \pi} \dfrac{1+\cos ^{3} x}{\sin ^{2} x} $$
    $$=\displaystyle \lim _{x \rightarrow \pi} \dfrac{(1+\cos x)\left(1-\cos x+\cos ^{2} x\right)}{(1-\cos x)(1+\cos x)}$$
    $$=\displaystyle \lim _{x \rightarrow \pi} \dfrac{1-\cos x+\cos ^{2} x}{1-\cos x}=\dfrac{1+1+1}{1+1}=\dfrac{3}{2}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now