Self Studies
Selfstudy
Selfstudy

Limits and Deri...

TIME LEFT -
  • Question 1
    1 / -0

    For $$x>y$$, $$\displaystyle\lim_{x\rightarrow 0}{\left[\left(\sin{x}\right)^{1/x}+\left(\cfrac{1}{x}\right)^{\sin{x}}\right]}$$ is :

  • Question 2
    1 / -0

    If $$f : R \rightarrow (0, \infty)$$ is an increasing function and if $$\displaystyle\lim_{x \rightarrow 2018} \dfrac{f(3x)}{f(x)} = 1$$, then $$\displaystyle\lim_{x \rightarrow 2018} \dfrac{f(2x)}{f(x)}$$ is equal to 

  • Question 3
    1 / -0

    If $$f$$ is differentiable at $$x = 1$$ and $$\underset{h \rightarrow 0}{\lim} \dfrac{1}{h} f (1 + h) = 5, f'(1) = $$

  • Question 4
    1 / -0

    If $$y=\sqrt{\sin x+\sqrt{\sin x+\sqrt{\sin x+}}}.....\infty$$ then $$\dfrac{dy}{dx}=?$$

  • Question 5
    1 / -0

    If $$y=(\tan x)^{\cot x}$$ then $$\dfrac{dy}{dx}=?$$

  • Question 6
    1 / -0

    If $$x=a(\cos\theta+\theta\sin\theta)$$ and $$y=a(\sin\theta-\theta\cos\theta)$$ then $$\dfrac{dy}{dx}=?$$

  • Question 7
    1 / -0

    If $$x=a\sec\theta, y=b\tan\theta$$ then $$\dfrac{dy}{dx}=$$

  • Question 8
    1 / -0

    If $$y=\sqrt{x\sin x}$$ then $$\dfrac{dy}{dx}=?$$

  • Question 9
    1 / -0

    If $$y=\sqrt{\dfrac{1+\sin x}{1-\sin x}}$$ then $$\dfrac{dy}{dx}=?$$

  • Question 10
    1 / -0

    The value of $$ \displaystyle \lim _{x \rightarrow \pi} \dfrac{1+\cos ^{3} x}{\sin ^{2} x} $$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now