Self Studies

Principle of Mathematical Induction Test - 9

Result Self Studies

Principle of Mathematical Induction Test - 9
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Statement-l: For every natural number $$n\geq 2,\ \displaystyle \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots\ldots+\frac{1}{\sqrt{n}}>\sqrt{n}$$.
    Statement-2: For every natural number $$n\geq 2,\ \sqrt{n(n+1)}<n+1$$. 
    Solution
    $$ \displaystyle P\left( n \right) =\frac { 1 }{ \sqrt { 1 }  } +\frac { 1 }{ \sqrt { 2 }  } +...+\frac { 1 }{ \sqrt { n }  } $$ 
    $$ \displaystyle P\left( 2 \right) =\frac { 1 }{ \sqrt { 1 }  } +\frac { 1 }{ \sqrt { 2 }  } >\sqrt { 2 } $$
    Let us assume that $$P(k)$$
    $$ \displaystyle =\frac { 1 }{ \sqrt { 1 }  } +\frac { 1 }{ \sqrt { 2 }  } +...+\frac { 1 }{ \sqrt { k }  } >\sqrt { k } $$ is true 
    $$ \displaystyle \therefore P\left( k+1 \right) =\frac { 1 }{ \sqrt { 1 }  } +\frac { 1 }{ \sqrt { 2 }  } +...+\frac { 1 }{ \sqrt { k }  } +\frac { 1 }{ \sqrt { k+1 }  } >\sqrt { k+1 } $$ has to be true. 
    $$ \displaystyle L.H.S.>\sqrt { k } +\frac { 1 }{ \sqrt { k+1 }  } =\frac { \sqrt { k\left( k+1 \right)} +1   }{ \sqrt { k+1 }  } $$
    Since $$\sqrt { k\left( k+1 \right)  } >k\quad \left( \forall k\ge 0 \right) $$
     $$\displaystyle \therefore \frac { \sqrt { k\left( k+1 \right) }+1  }{ \sqrt { k+1 }  } >\frac { k+1 }{ \sqrt { k+1 }  } =\sqrt { k+1 } $$
    Let $$P\left( n \right) =\sqrt { n\left( n+1 \right)  } <\left( k+1 \right) $$
    Statement-1 is correct. 
    $$P\left( 2 \right) =\sqrt { 2\times 3 } <3$$
    If $$P\left( k \right) =\sqrt { k\left( k+1 \right)  } <\left( k+1 \right) $$ is true 
    Now $$P\left( k+1 \right) =\sqrt { \left( k+1 \right) \left( k+2 \right)} <k+2  $$ has to be true 
    Since $$\left( k+1 \right) <k+2$$
    $$\therefore \sqrt { \left( k+1 \right) \left( k+2 \right)  } <\left( k+2 \right) $$
    Hence Statement-2 is  not correct explanation of Statement-1. 
  • Question 2
    1 / -0
    Consider the statement: $$"P(n):n^2-n+41$$ is prime". Then which one of the following is true?
    Solution
    $$P(n): n^2-n+41$$ is prime

    $$P(5)=61$$ which is prime

    $$P(3)=47$$ which is also prime.
  • Question 3
    1 / -0
    Let $$S(k) = 1 + 3 + 5 + .... + (2k - 1) = 3 + k^2$$. Then which of the following is true?
    Solution
    Putting $$k=1$$, we get L.H.S=1 and R.H.S=4. Hence $$A$$ and $$D$$ are incorrect.
    Now, $$S\left( k+1 \right) =1+3+5+$$...$$+\left( 2k-1 \right) +\left( 2\left( k+1 \right) -1 \right) $$
        $$\Rightarrow S\left( k+1 \right) =S\left( k \right) +\left( 2k+1 \right) $$                                               [Since  $$S\left( k \right) =1+3+5+$$...$$+\left( 2k-1 \right)$$]
        $$\Rightarrow S\left( k+1 \right) =3+{ k }^{ 2 }+\left( 2k+1 \right) $$
        $$\Rightarrow S\left( k+1 \right) =3+{ \left( k+1 \right)  }^{ 2 }$$ 
     $$B$$ is correct option.
  • Question 4
    1 / -0
    If A = $$\begin{vmatrix}
    1 &0 \\
     1& 1
    \end{vmatrix}$$B and I =$$\begin{vmatrix}
    1 &0 \\
    0& 1
    \end{vmatrix}$$ ,then which one of the following holds for all n $$\geq $$ 1, by
    the principle of mathematical indunction 
    Solution
    $$A=\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}\\ { A }^{ 2 }=\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}\\ { A }^{ 3 }=\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}\\ \therefore { A }^{ n }=\begin{bmatrix} 1 & 0 \\ n & 1 \end{bmatrix}$$

    and $$nA=n\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}=\begin{bmatrix} n & 0 \\ n & n \end{bmatrix}$$

    $$\left( n-1 \right) I=\left( n-1 \right) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}=\begin{bmatrix} n-1 & 0 \\ 0 & n-1 \end{bmatrix}\\ \therefore nA-\left( n-1 \right) I=\begin{bmatrix} n & 0 \\ n & n \end{bmatrix}-\begin{bmatrix} n-1 & 0 \\ 0 & n-1 \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ n & 1 \end{bmatrix}={ A }^{ n }$$
  • Question 5
    1 / -0
    Mathematical Induction is the principle containing the set
    Solution
    Mathematical induction is a method of mathematical proof typically used to establish a given statement for all natural numbers.
  • Question 6
    1 / -0
    Let $$P(n)$$ be a statement and $$P(n)=P(n+1)  \forall n\in N$$, then $$P(n)$$ is true for what values of $$n$$?
    Solution
    Given, $$P(n) = P(n+1) \forall n\in N$$
    Substituting $$n-1$$ in place of $$n$$,
    $$P(n-1)=P(n)$$
    Thus if $$P(k)$$ is true for some $$k$$ $$\in$$ $$N$$, then it is true for $$k-1$$ and $$k+1$$.
    Thus, it is true $$\forall k$$ $$\in$$ $$N$$ 
  • Question 7
    1 / -0
    For every integer $$n\geq 1, (3^{2^{n}}-1)$$ is always divisible by
    Solution
    For $$n= 1$$, $$3^{2^{1}}-1 = 8 $$ , which is divisible by $$2^{n+2}$$. 

    Let us assume that $$3^{2^m} -1 $$ is divisible by $$2^{m+2}$$ for some integral value of $$m$$.
    Let us consider the expression for $$m+1$$
    $$3^{2^{m+1}} -1 $$
    $$ = (3^{2^{m}} -1) \times (3^{2^{m}} +1)$$
    The first term is divisible $$2^{m+2}$$ and the second term is also an even number. 
    Hence, the term is divisible by $$2^{m+2}$$. 
    Hence, by induction we can prove that it is true for all $$m$$.
  • Question 8
    1 / -0
    Let $$P(n)= 5^{n}-2^{n}$$. $$P(n)$$ is divisible by $$ 3\lambda$$ where $$\lambda$$ and $${n}$$ both are odd positive integers, then the least value of $$n$$ and $$\lambda$$ will be
    Solution
    $$5^n-2^n$$ is divisible by $$5-2=3$$ always... Putting $$n=\lambda =1$$ which is the least odd positive integer, this works to be true.
    Hence Option C
  • Question 9
    1 / -0
    Let $$\mathrm{S}(\mathrm{K})=1+3+5+\ldots\ldots..+(2\mathrm{K}-1)=3+\mathrm{K}^{2}$$. Then which of the following is true? 
    Solution
    $$S\left( K \right) =1+3+5+...+\left( 2K-1 \right) =3+{ K }^{ 2 }$$

    Put $$K=1$$ in both sides

    $$\therefore L.H.S=1$$ and $$R.H.S=3+1=4$$

    $$\Rightarrow L.H.S\neq R.H.S$$

    Put $$\left( K+1 \right) $$ on both sides in the place of $$k$$

    $$L.H.S=1+3+5+...+\left( 2K-1 \right) +\left( 2K+1 \right) $$ 

    and $$R.H.S=3+{ \left( K+1 \right)  }^{ 2 }=3+{ K }^{ 2 }+2K+1$$

    Let $$L.H.S = R.H.S$$

    $$\Rightarrow 1+3+5+...+\left( 2K-1 \right) +\left( 2K+1 \right) =3+{ K }^{ 2 }+2K+1\\ \Rightarrow 1+3+5+...+\left( 2K-1 \right) =3+{ K }^{ 2 }$$

    If $$S(K)$$ is true, then $$S(K+1)$$ is also true.

    Hence $$S\left( K \right) \Rightarrow S\left( K+1 \right) $$
  • Question 10
    1 / -0
    $$\forall n\in N; x^{2n-1}+y^{2n-1}$$ is divisible by?
    Solution
    $$\displaystyle P\left ( n \right )=x^{2n-1}+y^{2n-1}\forall n \epsilon N.
    $$ 
    Substitute $$n=1$$ to obtain $$\displaystyle  p\left ( 1 \right )= x+y $$ ,Which is divisible by $$x+y$$.
    For, $$n=2$$, we get $$\displaystyle  P\left ( 2 \right )=x^{3}+y^{3}=\left ( x+y \right )\left ( x^{2}-xy+y^{2} \right ) $$ which is divisible by $$x+y$$. 
    With the help of induction we conclude that $$P(n)$$ will be divisible by $$x+y$$ for all $$n\in N$$.

    Ans: B
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now