Self Studies

Principle of Mathematical Induction Test - 9

Result Self Studies

Principle of Mathematical Induction Test - 9
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Statement-l: For every natural number n2, 11+12++1n>nn\geq 2,\ \displaystyle \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots\ldots+\frac{1}{\sqrt{n}}>\sqrt{n}.
    Statement-2: For every natural number n2, n(n+1)<n+1n\geq 2,\ \sqrt{n(n+1)}<n+1
    Solution
     P(n)=11 +12 +...+1n  \displaystyle P\left( n \right) =\frac { 1 }{ \sqrt { 1 }  } +\frac { 1 }{ \sqrt { 2 }  } +...+\frac { 1 }{ \sqrt { n }  }  
     P(2)=11 +12 >2 \displaystyle P\left( 2 \right) =\frac { 1 }{ \sqrt { 1 }  } +\frac { 1 }{ \sqrt { 2 }  } >\sqrt { 2 }
    Let us assume that P(k)P(k)
     =11 +12 +...+1k >k \displaystyle =\frac { 1 }{ \sqrt { 1 }  } +\frac { 1 }{ \sqrt { 2 }  } +...+\frac { 1 }{ \sqrt { k }  } >\sqrt { k } is true 
     P(k+1)=11 +12 +...+1k +1k+1 >k+1 \displaystyle \therefore P\left( k+1 \right) =\frac { 1 }{ \sqrt { 1 }  } +\frac { 1 }{ \sqrt { 2 }  } +...+\frac { 1 }{ \sqrt { k }  } +\frac { 1 }{ \sqrt { k+1 }  } >\sqrt { k+1 } has to be true. 
     L.H.S.>k+1k+1 =k(k+1)+1 k+1  \displaystyle L.H.S.>\sqrt { k } +\frac { 1 }{ \sqrt { k+1 }  } =\frac { \sqrt { k\left( k+1 \right)} +1   }{ \sqrt { k+1 }  }
    Since k(k+1) >k(k0)\sqrt { k\left( k+1 \right)  } >k\quad \left( \forall k\ge 0 \right)
      k(k+1)+1 k+1 >k+1k+1 =k+1\displaystyle \therefore \frac { \sqrt { k\left( k+1 \right) }+1  }{ \sqrt { k+1 }  } >\frac { k+1 }{ \sqrt { k+1 }  } =\sqrt { k+1 }
    Let P(n)=n(n+1) <(k+1)P\left( n \right) =\sqrt { n\left( n+1 \right)  } <\left( k+1 \right)
    Statement-1 is correct. 
    P(2)=2×3<3P\left( 2 \right) =\sqrt { 2\times 3 } <3
    If P(k)=k(k+1) <(k+1)P\left( k \right) =\sqrt { k\left( k+1 \right)  } <\left( k+1 \right) is true 
    Now P(k+1)=(k+1)(k+2)<k+2 P\left( k+1 \right) =\sqrt { \left( k+1 \right) \left( k+2 \right)} <k+2   has to be true 
    Since (k+1)<k+2\left( k+1 \right) <k+2
    (k+1)(k+2) <(k+2)\therefore \sqrt { \left( k+1 \right) \left( k+2 \right)  } <\left( k+2 \right)
    Hence Statement-2 is  not correct explanation of Statement-1. 
  • Question 2
    1 / -0
    Consider the statement: "P(n):n2n+41"P(n):n^2-n+41 is prime". Then which one of the following is true?
    Solution
    P(n):n2n+41P(n): n^2-n+41 is prime

    P(5)=61P(5)=61 which is prime

    P(3)=47P(3)=47 which is also prime.
  • Question 3
    1 / -0
    Let S(k)=1+3+5+....+(2k1)=3+k2S(k) = 1 + 3 + 5 + .... + (2k - 1) = 3 + k^2. Then which of the following is true?
    Solution
    Putting k=1k=1, we get L.H.S=1 and R.H.S=4. Hence AA and DD are incorrect.
    Now, S(k+1)=1+3+5+S\left( k+1 \right) =1+3+5+...+(2k1)+(2(k+1)1)+\left( 2k-1 \right) +\left( 2\left( k+1 \right) -1 \right)
        S(k+1)=S(k)+(2k+1)\Rightarrow S\left( k+1 \right) =S\left( k \right) +\left( 2k+1 \right)                                                [Since  S(k)=1+3+5+S\left( k \right) =1+3+5+...+(2k1)+\left( 2k-1 \right)]
        S(k+1)=3+k2+(2k+1)\Rightarrow S\left( k+1 \right) =3+{ k }^{ 2 }+\left( 2k+1 \right)
        S(k+1)=3+(k+1) 2\Rightarrow S\left( k+1 \right) =3+{ \left( k+1 \right)  }^{ 2 } 
     BB is correct option.
  • Question 4
    1 / -0
    If A = $$\begin{vmatrix}
    1 &0 \\
     1& 1
    \end{vmatrix}Band I=B and I =\begin{vmatrix}
    1 &0 \\
    0& 1
    \end{vmatrix} ,thenwhichoneofthefollowingholdsforalln  ,then which one of the following holds for all n \geq $$ 1, by
    the principle of mathematical indunction 
    Solution
    A=[1011]A2=[1011][1011]=[1021]A3=[1021][1011]=[1031]An=[10n1]A=\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}\\ { A }^{ 2 }=\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}\\ { A }^{ 3 }=\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}\\ \therefore { A }^{ n }=\begin{bmatrix} 1 & 0 \\ n & 1 \end{bmatrix}

    and nA=n[1011]=[n0nn]nA=n\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}=\begin{bmatrix} n & 0 \\ n & n \end{bmatrix}

    (n1)I=(n1)[1001]=[n100n1]nA(n1)I=[n0nn][n100n1]=[10n1]=An\left( n-1 \right) I=\left( n-1 \right) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}=\begin{bmatrix} n-1 & 0 \\ 0 & n-1 \end{bmatrix}\\ \therefore nA-\left( n-1 \right) I=\begin{bmatrix} n & 0 \\ n & n \end{bmatrix}-\begin{bmatrix} n-1 & 0 \\ 0 & n-1 \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ n & 1 \end{bmatrix}={ A }^{ n }
  • Question 5
    1 / -0
    Mathematical Induction is the principle containing the set
    Solution
    Mathematical induction is a method of mathematical proof typically used to establish a given statement for all natural numbers.
  • Question 6
    1 / -0
    Let P(n)P(n) be a statement and P(n)=P(n+1) nNP(n)=P(n+1)  \forall n\in N, then P(n)P(n) is true for what values of nn?
    Solution
    Given, P(n)=P(n+1)nNP(n) = P(n+1) \forall n\in N
    Substituting n1n-1 in place of nn,
    P(n1)=P(n)P(n-1)=P(n)
    Thus if P(k)P(k) is true for some kk \in NN, then it is true for k1k-1 and k+1k+1.
    Thus, it is true k\forall k \in NN 
  • Question 7
    1 / -0
    For every integer n1,(32n1)n\geq 1, (3^{2^{n}}-1) is always divisible by
    Solution
    For n=1n= 13211=83^{2^{1}}-1 = 8 , which is divisible by 2n+22^{n+2}

    Let us assume that 32m13^{2^m} -1 is divisible by 2m+22^{m+2} for some integral value of mm.
    Let us consider the expression for m+1m+1
    32m+113^{2^{m+1}} -1
    =(32m1)×(32m+1) = (3^{2^{m}} -1) \times (3^{2^{m}} +1)
    The first term is divisible 2m+22^{m+2} and the second term is also an even number. 
    Hence, the term is divisible by 2m+22^{m+2}
    Hence, by induction we can prove that it is true for all mm.
  • Question 8
    1 / -0
    Let P(n)=5n2nP(n)= 5^{n}-2^{n}. P(n)P(n) is divisible by 3λ 3\lambda where λ\lambda and n{n} both are odd positive integers, then the least value of nn and λ\lambda will be
    Solution
    5n2n5^n-2^n is divisible by 52=35-2=3 always... Putting n=λ=1n=\lambda =1 which is the least odd positive integer, this works to be true.
    Hence Option C
  • Question 9
    1 / -0
    Let S(K)=1+3+5+..+(2K1)=3+K2\mathrm{S}(\mathrm{K})=1+3+5+\ldots\ldots..+(2\mathrm{K}-1)=3+\mathrm{K}^{2}. Then which of the following is true? 
    Solution
    S(K)=1+3+5+...+(2K1)=3+K2S\left( K \right) =1+3+5+...+\left( 2K-1 \right) =3+{ K }^{ 2 }

    Put K=1K=1 in both sides

    L.H.S=1\therefore L.H.S=1 and R.H.S=3+1=4R.H.S=3+1=4

    L.H.SR.H.S\Rightarrow L.H.S\neq R.H.S

    Put (K+1)\left( K+1 \right) on both sides in the place of kk

    L.H.S=1+3+5+...+(2K1)+(2K+1)L.H.S=1+3+5+...+\left( 2K-1 \right) +\left( 2K+1 \right)  

    and R.H.S=3+(K+1) 2=3+K2+2K+1R.H.S=3+{ \left( K+1 \right)  }^{ 2 }=3+{ K }^{ 2 }+2K+1

    Let L.H.S=R.H.SL.H.S = R.H.S

    1+3+5+...+(2K1)+(2K+1)=3+K2+2K+11+3+5+...+(2K1)=3+K2\Rightarrow 1+3+5+...+\left( 2K-1 \right) +\left( 2K+1 \right) =3+{ K }^{ 2 }+2K+1\\ \Rightarrow 1+3+5+...+\left( 2K-1 \right) =3+{ K }^{ 2 }

    If S(K)S(K) is true, then S(K+1)S(K+1) is also true.

    Hence S(K)S(K+1)S\left( K \right) \Rightarrow S\left( K+1 \right)
  • Question 10
    1 / -0
    nN;x2n1+y2n1\forall n\in N; x^{2n-1}+y^{2n-1} is divisible by?
    Solution
    $$\displaystyle P\left ( n \right )=x^{2n-1}+y^{2n-1}\forall n \epsilon N.
    $$ 
    Substitute n=1n=1 to obtain  p(1)=x+y\displaystyle  p\left ( 1 \right )= x+y ,Which is divisible by x+yx+y.
    For, n=2n=2, we get  P(2)=x3+y3=(x+y)(x2xy+y2)\displaystyle  P\left ( 2 \right )=x^{3}+y^{3}=\left ( x+y \right )\left ( x^{2}-xy+y^{2} \right ) which is divisible by x+yx+y
    With the help of induction we conclude that P(n)P(n) will be divisible by x+yx+y for all nNn\in N.

    Ans: B
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now