Self Studies
Selfstudy
Selfstudy

Principle of Ma...

TIME LEFT -
  • Question 1
    1 / -0

    Statement-l: For every natural number $$n\geq 2,\ \displaystyle \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots\ldots+\frac{1}{\sqrt{n}}>\sqrt{n}$$.
    Statement-2: For every natural number $$n\geq 2,\ \sqrt{n(n+1)}<n+1$$. 

  • Question 2
    1 / -0

    Consider the statement: $$"P(n):n^2-n+41$$ is prime". Then which one of the following is true?

  • Question 3
    1 / -0

    Let $$S(k) = 1 + 3 + 5 + .... + (2k - 1) = 3 + k^2$$. Then which of the following is true?

  • Question 4
    1 / -0

    If A = $$\begin{vmatrix}
    1 &0 \\
     1& 1
    \end{vmatrix}$$B and I =$$\begin{vmatrix}
    1 &0 \\
    0& 1
    \end{vmatrix}$$ ,then which one of the following holds for all n $$\geq $$ 1, by
    the principle of mathematical indunction 

  • Question 5
    1 / -0

    Mathematical Induction is the principle containing the set

  • Question 6
    1 / -0

    Let $$P(n)$$ be a statement and $$P(n)=P(n+1)  \forall n\in N$$, then $$P(n)$$ is true for what values of $$n$$?

  • Question 7
    1 / -0

    For every integer $$n\geq 1, (3^{2^{n}}-1)$$ is always divisible by

  • Question 8
    1 / -0

    Let $$P(n)= 5^{n}-2^{n}$$. $$P(n)$$ is divisible by $$ 3\lambda$$ where $$\lambda$$ and $${n}$$ both are odd positive integers, then the least value of $$n$$ and $$\lambda$$ will be

  • Question 9
    1 / -0

    Let $$\mathrm{S}(\mathrm{K})=1+3+5+\ldots\ldots..+(2\mathrm{K}-1)=3+\mathrm{K}^{2}$$. Then which of the following is true? 

  • Question 10
    1 / -0

    $$\forall n\in N; x^{2n-1}+y^{2n-1}$$ is divisible by?

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now