`
Self Studies

Complex Numbers and Quadratic Equations Test 34

Result Self Studies

Complex Numbers and Quadratic Equations Test 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The modulus of $$\dfrac { \left( 3+2i \right) ^{ 2 } }{ \left( 4-3i \right)  } $$ is:
    Solution

  • Question 2
    1 / -0
    Number of complex numbers $$z$$ such that $$|z|=1$$ and $$\left|\dfrac {z}{z}+\dfrac {\bar {z}}{z}\right|=1$$ is
    Solution
    Since $$z$$ is equidistant from $$1,-1,i$$, we can say that $$z$$is center of circle with $$1,-1,i$$ lying on it's circumference and so there is one one circle possible passing through $$3$$ points. So, the answer is $$1$$.
  • Question 3
    1 / -0
    If arg $$\left( z \right) < 0,$$ then arg $$\left( { - z} \right)-arg(z)$$
    Solution

  • Question 4
    1 / -0
    Purely imaginary then find the sum of statement i $$a,b$$ 
  • Question 5
    1 / -0
    If $$\alpha$$ and $$\beta$$ are the roots of $${ 4x }^{ 2 }-16x+c=0,$$ c>0 such that $$1<\alpha <2<\beta <3$$, then the no.of integer values of c is 
    Solution
    Given, $$\alpha$$ and $$\beta$$ are roots of $$4x^2-16x+x=0$$
    where $$a=4$$
    $$b=-16$$
    $$x > 0$$
    now, $$\alpha\beta =\dfrac{a}{a}$$
    $$\Rightarrow \alpha\beta =\dfrac{c}{4}$$
    $$\Rightarrow \beta =\dfrac{c}{4\alpha}$$ ………(i)
    we have $$2 < \beta < 3$$
    $$\Rightarrow 2 < \dfrac{c}{4\alpha} < 3$$ [from $$(1)$$]
    $$\Rightarrow 8 < \dfrac{c}{\alpha} < 12$$
    $$\Rightarrow 8\alpha < c < 12\alpha$$ ………(ii)
    and $$1 < \alpha < 2$$
    $$\Rightarrow \alpha > 1\Rightarrow 8\alpha > 8$$ ……….(iii)
    and $$\alpha < 2$$
    $$\Rightarrow 12\alpha < 24$$ ………..(iv)
    Substituting (iii) and (iv) in (ii) we get
    $$8 < 8\alpha < c < 12\alpha < 24$$ $$[\alpha =9, 10, 11, 12, 13, 14, 15, 16, 13, 18, 19, 20, 21, 22, 23]$$
    $$\Rightarrow 8 < c < 24$$
    Therefore number of integer values of c is $$15$$.

  • Question 6
    1 / -0
    $$\sqrt { \left( \log _ { 3 } \tan x \right) }$$  is real for:
  • Question 7
    1 / -0
    Arg $$\left\{ {\sin \frac{{8\pi }}{5} + i\left( {1 + \cos \frac{{8\pi }}{5}} \right)} \right\}$$ is equal to
    Solution

  • Question 8
    1 / -0
    Let 'z' be a complex number satisfying $$|z-2-i|\le 5,$$ Then |z-14-6i| lies in 
    Solution
    Here, $$|z-2-i|\leq 5$$ ………..$$(1)$$
    Now, $$|z-14-6i|=|z-2-i-12-5i|=|(z-2-i)-(12+5i)|$$
    $$\leq |z-2-i|+|12+5i|$$
    $$\leq 5+|12+5i|$$
    $$=5+\sqrt{(12)^2+(5)^2}$$
    $$=5+\sqrt{144+25}$$
    $$=5+\sqrt{169}$$
    $$=5+13$$
    $$=18$$.
    $$\therefore |z-14-6i|\leq 18$$
    and $$|z-14-6i|=|z-2-i-12-5i|$$
    $$=|-(12+5i)+(z-2-i)|$$
    $$\geq ||-(12+5i)|-|z-2-i||$$
    $$\geq |12+5i|-5$$ $$[\because |z-2-i|\leq 5$$ $$\Rightarrow -|z-2-i|\geq -5]$$
    $$=13-5$$
    $$=8$$
    $$\therefore |z-14-6i|\geq 8$$
    $$\therefore |z-14-6i|$$ lies in $$\{8, 18\}$$.

  • Question 9
    1 / -0
    IF $$z_1=1+i,z_2=1-i$$ find $$z_1z_2$$
    Solution
    $$z_1=1+i$$

    $$z_2=1-i$$

    $$z_1z_2=1-(-1)=2$$

             $$=1+1$$

              $$=1-i+1+i$$

    $$z_1z_2=z_1+z_2$$
  • Question 10
    1 / -0
    The value of the sum $$\sum _{ n=1 }^{ 13 }{ ({ i }^{ n }+{ i }^{ n+1 }) } $$ , where $$i=\sqrt { -1 } $$ , equals
    Solution
    As we know that $$i+i^2+i^3+i^4=0$$
    $$\displaystyle\sum ^{13}_{n=1} (i^n+i^{n+1})=\sum ^{13}_{n=1}(1+i)(i^n)=(1+i)\sum ^{13}_{n=1} i^{n}=(1+i)(0+0+i^{13})=(1+i)i=i+i^2=i-1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now