Self Studies

Complex Numbers and Quadratic Equations Test 34

Result Self Studies

Complex Numbers and Quadratic Equations Test 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The modulus of (3+2i)2(43i) \dfrac { \left( 3+2i \right) ^{ 2 } }{ \left( 4-3i \right)  } is:
    Solution

  • Question 2
    1 / -0
    Number of complex numbers zz such that z=1|z|=1 and zz+zˉz=1\left|\dfrac {z}{z}+\dfrac {\bar {z}}{z}\right|=1 is
    Solution
    Since zz is equidistant from 1,1,i1,-1,i, we can say that zzis center of circle with 1,1,i1,-1,i lying on it's circumference and so there is one one circle possible passing through 33 points. So, the answer is 11.
  • Question 3
    1 / -0
    If arg (z)<0,\left( z \right) < 0, then arg (z)arg(z)\left( { - z} \right)-arg(z)
    Solution

  • Question 4
    1 / -0
    Purely imaginary then find the sum of statement i a,ba,b 
  • Question 5
    1 / -0
    If α\alpha and β\beta are the roots of 4x216x+c=0,{ 4x }^{ 2 }-16x+c=0, c>0 such that 1<α<2<β<31<\alpha <2<\beta <3, then the no.of integer values of c is 
    Solution
    Given, α\alpha and β\beta are roots of 4x216x+x=04x^2-16x+x=0
    where a=4a=4
    b=16b=-16
    x>0x > 0
    now, αβ=aa\alpha\beta =\dfrac{a}{a}
    αβ=c4\Rightarrow \alpha\beta =\dfrac{c}{4}
    β=c4α\Rightarrow \beta =\dfrac{c}{4\alpha} ………(i)
    we have 2<β<32 < \beta < 3
    2<c4α<3\Rightarrow 2 < \dfrac{c}{4\alpha} < 3 [from (1)(1)]
    8<cα<12\Rightarrow 8 < \dfrac{c}{\alpha} < 12
    8α<c<12α\Rightarrow 8\alpha < c < 12\alpha ………(ii)
    and 1<α<21 < \alpha < 2
    α>18α>8\Rightarrow \alpha > 1\Rightarrow 8\alpha > 8 ……….(iii)
    and α<2\alpha < 2
    12α<24\Rightarrow 12\alpha < 24 ………..(iv)
    Substituting (iii) and (iv) in (ii) we get
    8<8α<c<12α<248 < 8\alpha < c < 12\alpha < 24 [α=9,10,11,12,13,14,15,16,13,18,19,20,21,22,23][\alpha =9, 10, 11, 12, 13, 14, 15, 16, 13, 18, 19, 20, 21, 22, 23]
    8<c<24\Rightarrow 8 < c < 24
    Therefore number of integer values of c is 1515.

  • Question 6
    1 / -0
    (log3tanx)\sqrt { \left( \log _ { 3 } \tan x \right) }  is real for:
  • Question 7
    1 / -0
    Arg {sin8π5+i(1+cos8π5)}\left\{ {\sin \frac{{8\pi }}{5} + i\left( {1 + \cos \frac{{8\pi }}{5}} \right)} \right\} is equal to
    Solution

  • Question 8
    1 / -0
    Let 'z' be a complex number satisfying z2i5,|z-2-i|\le 5, Then |z-14-6i| lies in 
    Solution
    Here, z2i5|z-2-i|\leq 5 ………..(1)(1)
    Now, z146i=z2i125i=(z2i)(12+5i)|z-14-6i|=|z-2-i-12-5i|=|(z-2-i)-(12+5i)|
    z2i+12+5i\leq |z-2-i|+|12+5i|
    5+12+5i\leq 5+|12+5i|
    =5+(12)2+(5)2=5+\sqrt{(12)^2+(5)^2}
    =5+144+25=5+\sqrt{144+25}
    =5+169=5+\sqrt{169}
    =5+13=5+13
    =18=18.
    z146i18\therefore |z-14-6i|\leq 18
    and z146i=z2i125i|z-14-6i|=|z-2-i-12-5i|
    =(12+5i)+(z2i)=|-(12+5i)+(z-2-i)|
    (12+5i)z2i\geq ||-(12+5i)|-|z-2-i||
    12+5i5\geq |12+5i|-5 [z2i5[\because |z-2-i|\leq 5 z2i5]\Rightarrow -|z-2-i|\geq -5]
    =135=13-5
    =8=8
    z146i8\therefore |z-14-6i|\geq 8
    z146i\therefore |z-14-6i| lies in {8,18}\{8, 18\}.

  • Question 9
    1 / -0
    IF z1=1+i,z2=1iz_1=1+i,z_2=1-i find z1z2z_1z_2
    Solution
    z1=1+iz_1=1+i

    z2=1iz_2=1-i

    z1z2=1(1)=2z_1z_2=1-(-1)=2

             =1+1=1+1

              =1i+1+i=1-i+1+i

    z1z2=z1+z2z_1z_2=z_1+z_2
  • Question 10
    1 / -0
    The value of the sum n=113(in+in+1) \sum _{ n=1 }^{ 13 }{ ({ i }^{ n }+{ i }^{ n+1 }) }  , where i=1 i=\sqrt { -1 }  , equals
    Solution
    As we know that i+i2+i3+i4=0i+i^2+i^3+i^4=0
    n=113(in+in+1)=n=113(1+i)(in)=(1+i)n=113in=(1+i)(0+0+i13)=(1+i)i=i+i2=i1\displaystyle\sum ^{13}_{n=1} (i^n+i^{n+1})=\sum ^{13}_{n=1}(1+i)(i^n)=(1+i)\sum ^{13}_{n=1} i^{n}=(1+i)(0+0+i^{13})=(1+i)i=i+i^2=i-1
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now