Self Studies

Complex Numbers...

TIME LEFT -
  • Question 1
    1 / -0

    The modulus of $$\dfrac { \left( 3+2i \right) ^{ 2 } }{ \left( 4-3i \right)  } $$ is:

  • Question 2
    1 / -0

    Number of complex numbers $$z$$ such that $$|z|=1$$ and $$\left|\dfrac {z}{z}+\dfrac {\bar {z}}{z}\right|=1$$ is

  • Question 3
    1 / -0

    If arg $$\left( z \right) < 0,$$ then arg $$\left( { - z} \right)-arg(z)$$

  • Question 4
    1 / -0

    Purely imaginary then find the sum of statement i $$a,b$$ 

  • Question 5
    1 / -0

    If $$\alpha$$ and $$\beta$$ are the roots of $${ 4x }^{ 2 }-16x+c=0,$$ c>0 such that $$1<\alpha <2<\beta <3$$, then the no.of integer values of c is 

  • Question 6
    1 / -0

    $$\sqrt { \left( \log _ { 3 } \tan x \right) }$$  is real for:

  • Question 7
    1 / -0

    Arg $$\left\{ {\sin \frac{{8\pi }}{5} + i\left( {1 + \cos \frac{{8\pi }}{5}} \right)} \right\}$$ is equal to

  • Question 8
    1 / -0

    Let 'z' be a complex number satisfying $$|z-2-i|\le 5,$$ Then |z-14-6i| lies in 

  • Question 9
    1 / -0

    IF $$z_1=1+i,z_2=1-i$$ find $$z_1z_2$$

  • Question 10
    1 / -0

    The value of the sum $$\sum _{ n=1 }^{ 13 }{ ({ i }^{ n }+{ i }^{ n+1 }) } $$ , where $$i=\sqrt { -1 } $$ , equals

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now