`
Self Studies

Complex Numbers and Quadratic Equations Test 35

Result Self Studies

Complex Numbers and Quadratic Equations Test 35
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$z_1$$ and $$z_2$$ are two non-zero complex numbers such that $$z_1=2+4i\\z_2=5-6i$$, then $$z_2-z_1$$ equals
    Solution
    $$z_1=2+4i\\\\z_2=5-6i\\\\z_2-z_1=5-6i-2-4i=3-10i$$
  • Question 2
    1 / -0
    The imaginary part of $$t ; t \in R$$ is 
    Solution

  • Question 3
    1 / -0
    If  $$z = \cos \dfrac { \pi } { 4 } + i \sin \dfrac { \pi } { 6 } ,$$  then
    Solution
    $$z = \cos \dfrac{\pi}{4} + i \sin \dfrac{\pi}{6}$$

    $$z = \dfrac{1}{\sqrt{2}} + i \dfrac{1}{2}$$

    $$\theta = \tan^{-1} \dfrac{\dfrac{1}{2}}{\dfrac{1}{\sqrt{2}}} = \tan^{-1} \left(\dfrac{\sqrt{2}}{2} \right)$$

    $$\theta = \tan^{-1} \left(\dfrac{1}{\sqrt{2}}\right)$$

    $$\therefore arg z = \tan^{-1} \dfrac{1}{\sqrt{2}}$$
    $$|z| = \sqrt{\left(\dfrac{1}{\sqrt{2}}\right)^2 + \left(\dfrac{1}{2}\right)^2} = \sqrt{\dfrac{1}{2} + \dfrac{1}{4}}$$

    $$= \sqrt{\dfrac{2 + 1}{4}}$$

    $$= \dfrac{\sqrt{3}}{2}$$

    $$z = \cos \dfrac{\pi}{4} + i \sin \dfrac{pi}{4}$$

    $$arg z = angle = \dfrac{\pi}{4}$$

    and $$|z| = \cos^2 \dfrac{\pi}{4} + \sin^2 \dfrac{\pi}{4} = 1$$
  • Question 4
    1 / -0
    Let z be a complex number such that the principal value of argument, arg $$z < 0$$. Then $$arg(-z) - arg (z)$$ is
    Solution
    Consider
    $$z=|z|e^{iθ}$$

    Now,
    $$−z=|z|e^{i(θ±π)}=|z|e^{i\bar{\theta}}$$

    where$$ \bar{\theta}=arg(−z)$$

    Then
    $$arg(−z)−arg(z)=\bar{\theta}−θ=±π$$

    This has been verified numerically for random values of $$z$$.
  • Question 5
    1 / -0
    Given $$ z _ { 1 } + 3 z _ { 2 } - 4 z _ { 3 } = 0 $$ then $$ z _ { 1 } , z _ { 2 } , z _ { 3 } $$ are
    Solution

  • Question 6
    1 / -0
    If z be a complex number satisfying $$z^{4}+z^{3}+2z^{2}+z+1=0$$ then $$\left|z\right|=$$
    Solution
    $$z^{4}+z^{3}+2z^{2}+z+1=0$$
    $$\Rightarrow z^{4}+z^{2}+z^{3}+z+z^{2}+1=0$$ by rearranging
    $$\Rightarrow z^{2}(z^{2}+1)+z(z^{2}+1)+1(z^{2}+1)=0$$
    $$\Rightarrow z^{2}(z^{2}+1)+(z^{2}+1)(z+1)=0$$
    $$\Rightarrow (z^{2}+1)(z^{2}+z+1)=0$$
    $$\Rightarrow z^{2}+1=0, z^{2}+2+1=0$$
    $$\Rightarrow z=\pm i,  z=\frac{-1\pm i\sqrt{3}}{2}$$
    $$\therefore z=i, -i, \frac{-1+i\sqrt{3}}{2},\frac{-1-i\sqrt{3}}{2}$$
    $$\therefore |z|=+1$$

  • Question 7
    1 / -0
    Express the following complex numbers in the standard form $$ a+ib$$ :
    $$ \left ( \dfrac{1}{1-4i}-\dfrac{2}{1+i} \right )\left ( \dfrac{3-4i}{5+i} \right )$$
    Solution

  • Question 8
    1 / -0
    Express the following complex numbers in the standard form $$ a+ib$$ :
    $$ \dfrac{\left ( 2+i \right )^{3}}{2+3i}$$
    Solution

  • Question 9
    1 / -0
    Find the modulus and argument of the following complex numbers and hence express each of them in the polar form:
    $$1-i$$
    Solution
    Let $$z=1-i$$. Then, $$\left | z \right |=\sqrt{1^{2}+(-1)^{2}}=\sqrt{2}$$.

    Let $$\alpha $$ be the acute angle given by $$tan\, \alpha =\dfrac{\left | Im(z) \right |}{\left | Re(z) \right |}$$.

    Then,
    $$tan\, \alpha =\dfrac{|-1|}{|1|}=1\Rightarrow \alpha =\dfrac{\pi }{4}$$

    Clearly, z lies in the fourth quadrant. Therefore, $$arg(z)= -\alpha =-\dfrac{\pi }{4}$$.
  • Question 10
    1 / -0
    Express the following complex numbers in the standard form $$ a+ib$$ :
    $$ \dfrac{3-4i}{\left ( 4-2i \right )\left ( 1+i \right )}$$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now