Self Studies

Complex Numbers...

TIME LEFT -
  • Question 1
    1 / -0

    $$z_1$$ and $$z_2$$ are two non-zero complex numbers such that $$z_1=2+4i\\z_2=5-6i$$, then $$z_2-z_1$$ equals

  • Question 2
    1 / -0

    The imaginary part of $$t ; t \in R$$ is 

  • Question 3
    1 / -0

    If  $$z = \cos \dfrac { \pi } { 4 } + i \sin \dfrac { \pi } { 6 } ,$$  then

  • Question 4
    1 / -0

    Let z be a complex number such that the principal value of argument, arg $$z < 0$$. Then $$arg(-z) - arg (z)$$ is

  • Question 5
    1 / -0

    Given $$ z _ { 1 } + 3 z _ { 2 } - 4 z _ { 3 } = 0 $$ then $$ z _ { 1 } , z _ { 2 } , z _ { 3 } $$ are

  • Question 6
    1 / -0

    If z be a complex number satisfying $$z^{4}+z^{3}+2z^{2}+z+1=0$$ then $$\left|z\right|=$$

  • Question 7
    1 / -0

    Express the following complex numbers in the standard form $$ a+ib$$ :
    $$ \left ( \dfrac{1}{1-4i}-\dfrac{2}{1+i} \right )\left ( \dfrac{3-4i}{5+i} \right )$$

  • Question 8
    1 / -0

    Express the following complex numbers in the standard form $$ a+ib$$ :
    $$ \dfrac{\left ( 2+i \right )^{3}}{2+3i}$$

  • Question 9
    1 / -0

    Find the modulus and argument of the following complex numbers and hence express each of them in the polar form:
    $$1-i$$

  • Question 10
    1 / -0

    Express the following complex numbers in the standard form $$ a+ib$$ :
    $$ \dfrac{3-4i}{\left ( 4-2i \right )\left ( 1+i \right )}$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now