Self Studies

Permutations and Combinations Test 43

Result Self Studies

Permutations and Combinations Test 43
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The number of words of four letters containing equal number of vowels and consonants, repetition being allowed, is 
    Solution
    Given, number of vowels =number of consonants
    So, there will be 2 cases (i) no repetition(number of vowels =number of consonants=2)
                                             (ii) both the vowel and consonant will be repeated twice(number of vowels =number of consonants=1)
    The method that will be followed involves selection of 2 places out of the 4 places which can be done in 6 ways and then applying the above 2 cases
    case (i): there will be 21 ways for secting the first consonant and 20 ways for the second and There will be 5 ways of selecting the first vowel and 4 ways of selecting the second.
    that makes number of words in case (i) = $$6(21\times 20\times 5\times 4)$$
    case (ii): we have to select only 1 out of the 21 consonants and 5 vowels and both of them will be repeated twice
    $$\Longrightarrow $$number ofwords in case (ii) =$$6(21\times 5)$$
    \therefore number of words$$= 6(21\times 20\times 5\times 4)$$+$$6(21\times 5)$$
                                                  $$= 6(21\times 5)(20\times 4+1)$$
                                                  $$= 210\times243$$
  • Question 2
    1 / -0
    The value of $$\displaystyle ^{40}C_{31}+\sum_{j=0}^{10} \: ^{40+j}C_{10+j}$$ is equal to
    Solution
    Expanding, we get
    We know that,
    $$^{n}C_{r-1}+^{n}C_{r}=^{n+1}C_{r}$$
    Therefore,
    $$\:^{40}C_{31}+[\:^{40}C_{10}+\:^{41}C_{11}+\:^{42}C_{12}+...\:^{50}C_{20}]$$
    $$=\:^{40}C_{9}+[\:^{40}C_{10}+\:^{41}C_{11}+\:^{42}C_{12}+...\:^{50}C_{20}]$$
    $$=(\:^{40}C_{9}+\:^{40}C_{10})+\:^{41}C_{11}+\:^{42}C_{12}+...\:^{50}C_{20}$$
    $$=(\:^{41}C_{10}+\:^{41}C_{11})+\:^{42}C_{12}+...\:^{50}C_{20}$$
    $$=\:^{42}C_{11}+\:^{42}C_{12}+...\:^{50}C_{20}$$
    :
    :
    :
    $$=\:^{49}C_{18}+\:^{49}C_{19}+\:^{50}C_{20}$$
    $$=\:^{50}C_{19}+\:^{50}C_{20}$$
    $$=\:^{51}C_{20}$$
  • Question 3
    1 / -0
    The number of different matrices that can be formed with elements 0,1,2 or 3, each matrix having 4 elements, is
    Solution


    $${\textbf{Step 1: Consider a matrix which has 4 elements.}}$$

                   $${\text{As a matrix contains four elements so, the order of a matrix can be,}}$$ $$1 \times 4$$ $${\text{or}}$$ $$4 \times 1$$ $${\text{or}}$$ $$2 \times 2.$$

                   $${\text{Also in every such matrix, each element is independent and has 4 different choices}}$$ $$\left( {0, 1, 2, 3} \right)$$

                   $$\therefore $$ $${\text{The number of ways to fill four places of a matrix of order 4}} \times {\text{1 by 0, 1, 2, 3}}$$

                    $$ = {}^4{C_1} \times {}^4{C_1} \times {}^4{C_1} \times {}^4{C_1}$$

                   $$\therefore $$ $${\text{The number of ways to fill four places of a matrix of order 4}} \times {\text{1 by 0, 1, 2, 3}}$$ $$ = 4 \times 4 \times 4 \times 4$$           

                   $$\left(\mathbf {\because {}^n{C_1} = n} \right)$$

                   $$\therefore $$ $${\text{The number of ways to fill four places of a matrix of order 4}} \times {\text{1 by 0, 1, 2, 3}}$$ 

                   $$ = {4^4} \ldots \left( 1 \right)$$

    $${\textbf{Step 2: Find total number of matrices that can be formed.}}$$

                   $${\text{From equation }}\left( 1 \right)$$ $${\text{we can say that, number of matrices in each order is }}{{\text{4}}^4}.$$

                   $${\text{Therefore,}}$$

                   $${\text{The number of matrices that can be formed}}$$ $$ = {4^4} + {4^4} + {4^4}$$

                   $$ \Rightarrow $$ $${\text{The number of matrices that can be formed}}$$ $$ = 3 \times {4^4}$$

    $${\textbf{Hence, option (C)}}{\textbf{ 3}} \mathbf {\times {4^4}}$$ $${\textbf{is correct answer.}}$$  

  • Question 4
    1 / -0
    The value of $$\displaystyle \sum_{r=1}^{n}r(^{n}C_{r}+^{r}P_{r})$$is
    Solution
    Expanding we get
    $$(1\:^{n}C_{1}+2\:^{n}C_{2}+...n\:^{n}C_{n})+(1\:^{1}P_{1}+2\:^{2}P_{2}+...n\:^{n}P_{n})$$
    $$=\frac{d(1+x)^{n}}{dx}|_{x=1}+(1\:^{1}P_{1}+2\:^{2}P_{2}+...n\:^{n}P_{n})$$
    $$=n(1+x)^{n-1}|_{x=1}+(1!+2(2!)+3(3!)+4(4!)+...n(n!))$$
    $$=n2^{n-1}+(1!+2(2!)+3(3!)+4(4!)+...n(n!))$$
    Now consider
    $$S_{n}=1!+2(2!)+3(3!)+4(4!)+...n(n!)$$
    $$S_{1}=1$$
    $$=2!-1$$
    $$S_{2}=5$$
    $$=3!-1$$
    $$S_{3}=1+4+18$$
    $$=23$$
    $$=4!-1$$
    Hence
    $$S_{n}=(n+1)!-1$$
    Hence the final answer is
    $$n2^{n-1}+(n+1)!-1$$
  • Question 5
    1 / -0
    The  number of signals that can be given using any number of flags of 5 different colors, is 
    Solution
    Total number of signals can be made by using at a time one or more but not larger than five flags.
    Now number of signals when r flags are used at a time from 5 flags is equal to the number of arrangement of 5 taking r at a time i.e $$^{5}P_{r}(r=1,2,...5)$$
    $$\therefore$$ Required ways
    $$^{5}P_{1}+^{5}P_{2}+....+^{5}P_{5}$$
    $$=5+20+60+120+120$$
    $$=325$$
  • Question 6
    1 / -0
    The value of the expression $$ ^{47}C_{4}+\sum_{f= 0}^{6}\ ^{52-f}C_{3} $$ equals 
    Solution
    Simplifying, we get
    $$\:^{47}C_{4}+\:^{46}C_{3}+\:^{47}C_{3}+\:^{48}C_{3}+\:^{49}C_{3}+\:^{50}C_{3}+\:^{51}C_{3}+\:^{52}C_{3}$$

    $$=\:^{46}C_{3}+\:^{47}C_{4}+\:^{47}C_{3}+\:^{48}C_{3}+\:^{49}C_{3}+\:^{50}C_{3}+\:^{51}C_{3}+\:^{52}C_{3}$$

    $$=\:^{46}C_{3}+\:^{48}C_{4}+\:^{48}C_{3}+\:^{49}C_{3}+\:^{50}C_{3}+\:^{51}C_{3}+\:^{52}C_{3}$$

    $$=\:^{46}C_{3}+\:^{49}C_{4}+\:^{49}C_{3}+\:^{50}C_{3}+\:^{51}C_{3}+\:^{52}C_{3}$$
    :
    :
    :
    $$=\:^{46}C_{3}+\:^{52}C_{4}+\:^{52}C_{3}$$

    $$=\:^{46}C_{3}+\:^{53}C_{4}$$
  • Question 7
    1 / -0

    Directions For Questions

    Let $$p$$ be a prime number & $$n$$ be a positive integer, then exponent of prime $$p$$ in $$n!$$ is denoted by $$\displaystyle E_{p}(n!)$$ & is given by $$\displaystyle E_{p}(n!)=\left[\frac{n}{p}\right]+\left[\frac{n}{p^{2}}\right]+\left[\frac{n}{p^{3}}\right]+.....+\left[\frac{n}{p^{x}}\right]$$ where $$x$$ is the largest positive integer such that $$\displaystyle p^{x}\leq n<p^{x+1}$$ and $$\displaystyle [\cdot ] $$ denotes the greatest integer
    Again every natural number $$N$$ can be expressed as the product of its prime factors given by $$\displaystyle N=P_{1}^{k_{2}}P_{2}^{k_{2}}....P_{r}^{k_{r}}$$ where $$\displaystyle P_{1},P_{2},P_{3},.......P_{r}$$ are prime numbers & $$\displaystyle k_{1}$$ are whole numbers.

    ...view full instructions

    The exponent of 7 in the coefficient of the greatest term in the expansion of  $$\displaystyle (1+x)^{200}$$ is
    Solution
    The greatest coefficient will be 
    $$\:^{200}C_{100}$$
    $$=\dfrac{200!}{100!.100!}$$
    Now the exponent of 7 in 200! will be 
    $$[\dfrac{200}{7}]+[\dfrac{200}{49}]$$
    $$=[28.57]+[4.08]$$
    $$=28+4$$
    $$=32$$
    The exponent of 7 in 100! will be 
    $$[\dfrac{100}{7}]+[\dfrac{100}{49}]$$
    $$=[14.28]+[2.04]$$
    $$=14+2$$
    $$=16$$
    Hence the power of 7 in $$(100!)^{2}$$ will be 
    $$16+16$$
    $$=32$$
    Hence the powers of seven in the numerator and denominator will be equal.
    Hence answer is $$0$$.
  • Question 8
    1 / -0
    The mean value of $$^{20}C_0,\dfrac{^{20}C_2}{3},\dfrac{^{20}C_4}{5},\cdots ,\dfrac{^{20}C_{20}}{21}$$ equals
    Solution
    We know: $${ (1+x) }^{ n }=_{ 0 }^{ n }{ C }+_{ 1 }^{ n }{ C }x+_{ 2 }^{ n }{ C }{ x }^{ 2 }+...+_{ n }^{ n }{ C }{ x }^{ n }$$
    Integrating from 0 to 1: $$\dfrac { { (1+x) }^{ n+1 } }{ n+1 }-\dfrac { 1 }{ n+1 } =_{ 0 }^{ n }{ Cx+ }_{ 1 }^{ n }{ C\dfrac { { x }^{ 2 } }{ 2 }  }+...+_{ n }^{ n }{ C\dfrac { { x }^{ n+1 } }{ n+1 }  }$$
    Put $$x=1$$ above: $$\dfrac { { 2 }^{ n+1 } }{ n+1 } =_{ 0 }^{ n }{ C+ }\dfrac { _{ 1 }^{ n }{ C } }{ 2 } +...+\dfrac { _{ n }^{ n }{ C } }{ n+1 } $$
    Put $$x=-1$$ above: $$-\dfrac { 1 }{ n+1 } =-_{ 0 }^{ n }{ C+ }\dfrac { _{ 1 }^{ n }{ C } }{ 2 } -\dfrac { _{ 2 }^{ n }{ C } }{ 3 } ...+{ (-1) }^{ n }\dfrac { _{ n }^{ n }{ C } }{ n+1 } $$
    Subtracting the above 2 results and using $$n = 20$$:
    $$2(^{20}C_0+\dfrac { _{ 2 }^{ 20 }{ C } }{ 3 } +...+\dfrac { _{ 20 }^{ 20 }{ C } }{ 21 } )=\dfrac { { 2 }^{ 21 } }{ 21 }  $$
    Hence, mean = $$\dfrac { \dfrac { 1 }{ 2 } \times \dfrac { { 2 }^{ 21 } }{ 21 } }{ 11 } =\dfrac { { 2 }^{ 20 } }{ 3\times77 } $$ (since there are 11 terms)
    Hence, (c) is correct.
  • Question 9
    1 / -0
    If $$\displaystyle \frac{^{n}C_{r}+3^{n}C_{r+1}+3^{n}C_{r+2}+^{n}C_{r+3}}{^{n}C_{r}+4^{n}C_{r+1}+6^{n}C_{r+2}+4^{n}C_{r+3}+^{n}C_{r+4}}=\frac{r+k}{n+k}$$, then the value of $$k$$ equals 
    Solution
    $$\displaystyle \frac{^{n}C_{r}+3^{n}C_{r+1}+3^{n}C_{r+2}+^{n}C_{r+3}}{^{n}C_{r}+4^{n}C_{r+1}+6^{n}C_{r+2}+4^{n}C_{r+3}+^{n}C_{r+4}}$$
    $$\displaystyle =\frac{r+k}{n+k}$$
    $$\displaystyle \Rightarrow \frac{r+4}{n+4}=\frac{r+k}{n+k}$$
    $$\Rightarrow k=4$$
  • Question 10
    1 / -0
    The expression $$ ^{n+4}C_{r}-^{n}C_{r}-3.^{n}C_{r-1}-3^{n}C_{r-2}-^{n}C_{r-3} $$
    Solution
    $$^{n+4}C_{r}$$-$$^{n}C_{r}$$-3.$$^{n}C_{r-1}$$-3.$$^{n}C_{r-2}$$-$$^{n}C_{r-3}$$
    $$\Longrightarrow $$$$^{n+4}C_{r}$$-(($$^{n}C_{r}$$+$$^{n}C_{r-1}$$)+2.($$^{n}C_{r-1}$$+$$^{n}C_{r-2}$$)+($$^{n}C_{r-2}$$+$$^{n}C_{r-3})$$
    $$\Longrightarrow $$$$^{n+4}C_{r}$$-($$^{n+1}C_{r}$$+2.$$^{n+1}C_{r-1}$$+$$^{n+1}C_{r-2}$$)
    $$\Longrightarrow $$$$^{n+4}C_{r}$$-(($$^{n+1}C_{r}$$+$$^{n+1}C_{r-1}$$)+($$^{n+1}C_{r-1}$$+$$^{n+1}C_{r-2}$$))
    $$\Longrightarrow $$$$^{n+4}C_{r}$$-($$^{n+2}C_{r}$$+$$^{n+2}C_{r-1}$$)
    $$\Longrightarrow $$$$^{n+3}C_{r}$$+$$^{n+3}C_{r-1}$$-$$^{n+3}C_{r}$$
    $$\Longrightarrow $$$$^{n+3}C_{r-1}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now