Self Studies

Permutations an...

TIME LEFT -
  • Question 1
    1 / -0

    The number of words of four letters containing equal number of vowels and consonants, repetition being allowed, is 

  • Question 2
    1 / -0

    The value of $$\displaystyle ^{40}C_{31}+\sum_{j=0}^{10} \: ^{40+j}C_{10+j}$$ is equal to

  • Question 3
    1 / -0

    The number of different matrices that can be formed with elements 0,1,2 or 3, each matrix having 4 elements, is

  • Question 4
    1 / -0

    The value of $$\displaystyle \sum_{r=1}^{n}r(^{n}C_{r}+^{r}P_{r})$$is

  • Question 5
    1 / -0

    The  number of signals that can be given using any number of flags of 5 different colors, is 

  • Question 6
    1 / -0

    The value of the expression $$ ^{47}C_{4}+\sum_{f= 0}^{6}\ ^{52-f}C_{3} $$ equals 

  • Question 7
    1 / -0

    Directions For Questions

    Let $$p$$ be a prime number & $$n$$ be a positive integer, then exponent of prime $$p$$ in $$n!$$ is denoted by $$\displaystyle E_{p}(n!)$$ & is given by $$\displaystyle E_{p}(n!)=\left[\frac{n}{p}\right]+\left[\frac{n}{p^{2}}\right]+\left[\frac{n}{p^{3}}\right]+.....+\left[\frac{n}{p^{x}}\right]$$ where $$x$$ is the largest positive integer such that $$\displaystyle p^{x}\leq n<p^{x+1}$$ and $$\displaystyle [\cdot ] $$ denotes the greatest integer
    Again every natural number $$N$$ can be expressed as the product of its prime factors given by $$\displaystyle N=P_{1}^{k_{2}}P_{2}^{k_{2}}....P_{r}^{k_{r}}$$ where $$\displaystyle P_{1},P_{2},P_{3},.......P_{r}$$ are prime numbers & $$\displaystyle k_{1}$$ are whole numbers.

    ...view full instructions

    The exponent of 7 in the coefficient of the greatest term in the expansion of  $$\displaystyle (1+x)^{200}$$ is

  • Question 8
    1 / -0

    The mean value of $$^{20}C_0,\dfrac{^{20}C_2}{3},\dfrac{^{20}C_4}{5},\cdots ,\dfrac{^{20}C_{20}}{21}$$ equals

  • Question 9
    1 / -0

    If $$\displaystyle \frac{^{n}C_{r}+3^{n}C_{r+1}+3^{n}C_{r+2}+^{n}C_{r+3}}{^{n}C_{r}+4^{n}C_{r+1}+6^{n}C_{r+2}+4^{n}C_{r+3}+^{n}C_{r+4}}=\frac{r+k}{n+k}$$, then the value of $$k$$ equals 

  • Question 10
    1 / -0

    The expression $$ ^{n+4}C_{r}-^{n}C_{r}-3.^{n}C_{r-1}-3^{n}C_{r-2}-^{n}C_{r-3} $$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now