Self Studies

Binomial Theorem Test - 10

Result Self Studies

Binomial Theorem Test - 10
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The total number of terms in the expansion of $$(x+y)^{50}+(x-y)^{50}$$ is
    Solution

    Consider given the expression,

    $${{\left( x+y \right)}^{50}}+{{\left( x-y \right)}^{50}}$$


    We know that,

    $${{\left( x+y \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}{{+}^{n}}{{C}_{1}}{{x}^{n-1}}y{{+}^{n}}{{C}_{2}}{{x}^{n-2}}{{y}^{2}}+{{......}^{n}}{{C}_{r}}{{x}^{n-r}}{{y}^{r}}{{.....}^{n}}{{C}_{n}}{{y}^{n}}$$

    Now,

    $${{\left( x+y \right)}^{50}}+{{\left( x-y \right)}^{50}}=2{{[}^{50}}{{C}_{0}}{{x}^{50}}{{+}^{50}}{{C}_{2}}{{x}^{50-2}}y{{+}^{50}}{{C}_{4}}{{x}^{50-4}}{{y}^{4}}+{{......}^{50}}{{C}_{r}}{{x}^{50-r}}{{y}^{r}}{{.....}^{50}}{{C}_{50}}{{y}^{50}}$$


    Hence, there are $$26$$ terms


    Hence, this is the answer.
  • Question 2
    1 / -0
    $${ _{  }^{ 15 }{ C } }_{ 3 }+{ _{  }^{ 15 }{ C } }_{ 5 }+....+{ _{  }^{ 15 }{ C } }_{ 15 }$$ will be equal to
    Solution
    We know
    $${ _{  }^{ 15 }{ C } }_{ 1 }+{ _{  }^{ 15 }{ C } }_{ 3 }+{ _{  }^{ 15 }{ C } }_{ 5 }+.....{ _{  }^{ 15 }{ C } }_{ 15 }={ 2 }^{ 15-1 }$$
    $$\therefore { _{  }^{ 15 }{ C } }_{ 3 }+{ _{  }^{ 15 }{ C } }_{ 5 }+...+{ _{  }^{ 15 }{ C } }_{ 15 }={ 2 }^{ 14 }-15$$
  • Question 3
    1 / -0
    The number of terms that are integers in the binomial expansion of $$(\sqrt {7} + \sqrt [3]{5})^{35}$$ is
    Solution
    The general term in the given expansion $${ \left( \sqrt { 7 } +\sqrt [ 3 ]{ 5 }  \right)  }^{ 35 }$$ is $${}^{35} C_{ r }{ 7 }^{ \frac { 35-r }{ 2 }  }\cdot { 5 }^{ \frac { r }{ 3 }  }$$,
    If $$r$$ is a multiple of $$3$$ and $$35-r$$ is a multiple of $$2$$ then the terms are integers,
    $$\therefore r=3,9,15,21,27,33$$ which are six values.
  • Question 4
    1 / -0
    [AS 1] If $$A = \dfrac{1}{3} B \, and \, B = \dfrac{1}{2} C$$, then A : B : C = .. 
    Solution
    $$A=\frac{B}{3}$$ ........(1)

    $$B=\frac{C}{2}$$

    $$\Rightarrow C=2B$$ .........(2)

    From (1) and (2),

    $$A:B:C=\frac{B}{3}:B:2B$$

    $$=\frac{1}{3}:1:2$$

    $$=1:3:6$$
  • Question 5
    1 / -0
    The expression $$^{n}\textrm{C}_{0}+4\ ^{n}\textrm{C}_{1}+4^{2}\ ^{n}\textrm{C}_{2}+..........+4^{n}\ ^{n}\textrm{C}_{n}$$, equals 
    Solution
    We know that
    $$\begin{array}{l} ^{ n }{ C_{ 0 } }+{ 4^{ n } }{ C_{ 1 } }+{ 4^{ 2 } }^{ n }{ C_{ 2 } }+.......+{ 4^{ n } }\, \, { \, ^{ n } }{ C_{ n } } \\ { \left( { 1+x } \right) ^{ n } }{ =^{ n } }{ C_{ 0 } }{ +^{ n } }{ C_{ 1 } }x{ +^{ n } }{ C_{ 2 } }{ x^{ 2 } }+.....{ +^{ n } }{ C_{ n } } \\ Putting\, x=4 \\ { 5^{ n } }{ =^{ n } }{ C_{ 0 } }+{ 4^{ n } }{ C_{ 1 } }+{ 4^{ 2 } }^{ n }{ C_{ 2 } }+.......+{ 4^{ n } }\, \, \, { \, ^{ n } }{ C_{ n } } \\ Hence,\, option\, C\, is\, the\, correct\, answer. \end{array}$$
  • Question 6
    1 / -0
    The $$3rd$$ term of $${\left( {3x - \dfrac{{{y^3}}}{6}} \right)^4}$$ is
    Solution
    As we know the binomial expansion-
    $$(a+b)^n=^nC_0a^nb^0+^nC_1a^{n-1}b^1+.......+^nC_na^0b^n$$

    Similarly,
    $$\left(3x-\dfrac{y^3}{6}\right)^4=^4C_0(3x)^4\left(-\dfrac{y^3}{6}\right)^0+^4C_1(3x)^3\left(-\dfrac{y^3}{6}\right)^1+^4C_2(3x)^2(-\dfrac{y^3}{6})^2+............$$

    So, the $$3^{rd}$$ term $$=^4C_2(3x)^2(-\dfrac{y^3}{6})^2$$
  • Question 7
    1 / -0
    The number of zeroes at the end of $$(101)^{11}-1$$ is
    Solution

  • Question 8
    1 / -0
    The middle terms in the expansion of $$(x^{2}-a^{2})^{5}$$ is
    Solution
        $$ (a\pm b)^{n} =^{n}C_{0}a^{n}b^{0}\pm ^{n}C_{1}a^{n-1}b^{1}+^{n}C_{2}a^{n-2}b^{2}\pm ....+^{n}C_{n}a^{0}b^{n}$$
    $$ (x^{2}-a^{2})^{5} = ^{5}C_{0}x^{10}-^{5}C_{1}x^{8}a^{2}+^{5}C_{2}x^{6}a^{4}-^{5}C_{3}x^{4}a^{6}+^{5}C_{4}x^{2}a^{8}-^{5}C_{5}x^{0}a^{10}$$
                       $$ = x^{10} - 5x^{8}a^{2}+10x^{6}a^{4} - 10x^{4}a^{6} +5x^{2}a^{8} - x^{0}a^{10}$$
    Middle term = $$ 10x^{6}a^{4},-10x^{4}a^{6}$$

  • Question 9
    1 / -0
    If sum of the coefficients in the expansion of $$(2+3cx+c^2x^2)^{12}$$ vanishes, then $$c$$ equals to
    Solution
    sum of the coefficients in the expansion of $$(2+3cx+c^2x^2)^{12}$$ is obtained by putting $$x=1$$ in the given expression.
    Since the sum of the co-efficients vanishes then,
    $$2+3c+c^2=0$$
    or, $$(c+1)(c+2)=0$$
    or, $$c=-1,-2$$.
  • Question 10
    1 / -0
    $$^{100}C_{0}-^{100}C_{2}+^{100}C_{4}+^{100}C_{8}-........+^{100}C_{100}=$$__
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now