Self Studies

Binomial Theore...

TIME LEFT -
  • Question 1
    1 / -0

    The total number of terms in the expansion of $$(x+y)^{50}+(x-y)^{50}$$ is

  • Question 2
    1 / -0

    $${ _{  }^{ 15 }{ C } }_{ 3 }+{ _{  }^{ 15 }{ C } }_{ 5 }+....+{ _{  }^{ 15 }{ C } }_{ 15 }$$ will be equal to

  • Question 3
    1 / -0

    The number of terms that are integers in the binomial expansion of $$(\sqrt {7} + \sqrt [3]{5})^{35}$$ is

  • Question 4
    1 / -0

    [AS 1] If $$A = \dfrac{1}{3} B \, and \, B = \dfrac{1}{2} C$$, then A : B : C = .. 

  • Question 5
    1 / -0

    The expression $$^{n}\textrm{C}_{0}+4\ ^{n}\textrm{C}_{1}+4^{2}\ ^{n}\textrm{C}_{2}+..........+4^{n}\ ^{n}\textrm{C}_{n}$$, equals 

  • Question 6
    1 / -0

    The $$3rd$$ term of $${\left( {3x - \dfrac{{{y^3}}}{6}} \right)^4}$$ is

  • Question 7
    1 / -0

    The number of zeroes at the end of $$(101)^{11}-1$$ is

  • Question 8
    1 / -0

    The middle terms in the expansion of $$(x^{2}-a^{2})^{5}$$ is

  • Question 9
    1 / -0

    If sum of the coefficients in the expansion of $$(2+3cx+c^2x^2)^{12}$$ vanishes, then $$c$$ equals to

  • Question 10
    1 / -0

    $$^{100}C_{0}-^{100}C_{2}+^{100}C_{4}+^{100}C_{8}-........+^{100}C_{100}=$$__

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now