Self Studies

Binomial Theorem Test - 13

Result Self Studies

Binomial Theorem Test - 13
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the coefficients of $$ (r+2)^{th} $$ and $$ (2r+1) ^{th}$$ terms $$ (r \neq 1) $$ are equal in the expansion of $$ (1+x)^{43} $$, then $$ r = $$
    Solution
    Since coefficient of $$(r+2)^{th}$$ term is equal to coefficient of $$(2r+1)^{th}$$ term in the binomial expansion of $$(1+x)^{43}$$
    Therefore $$\:^{43}C_{r+1}=\:^{43}C_{2r}$$
    Now $$\:^{n}C_{r}=\:^{n}C_{n-r}$$
    $$\therefore 43-(r+1)=2r$$
    $$\Rightarrow 42=3r$$
    $$\Rightarrow r=14$$
  • Question 2
    1 / -0
    The middle term of $$ \left ( x - \dfrac{1}{x} \right )^{2n+1} $$ is
    Solution
    Let the middle term of $$\left (x-\dfrac{1}{x}\right)^{2n+1}$$ be $$M$$.
    The middle term is $$\dfrac{1}{2}(2n+1+1)  $$ i.e $$(n+1)^{th}$$ term.
    $$M=T_{n+1}$$
    We k.n.t $$T_r$$ of expansion $$(a+b)^n$$ is $$T_r=^nC_{r-1}a^{n-r+1}b^{r-1} $$
    $$\therefore M=T_{n+1}=^{2n+1}C_n x^{2n+1-n} \left (-\dfrac{1}{x}\right)^n = (-1)^n .^{2n+1}C_n.x^{n+1-n}=(-1)^n.^{2n+1}C_n.x $$
    Option (D) is correct.
  • Question 3
    1 / -0
    The ratio of the coefficient of $$ x^{10} $$ in $$ (1-x^2)^{10} $$ and  the term independent of $$x$$ in $$ \left ( x - \dfrac{2}{x} \right )^{10} $$ is
    Solution
    Given $$(1-x^2)^{10}$$
    $$T_{r+1}=(-1)^{r}\:^{10}C_{r}x^{2r}$$...(i)
    For the coefficient of $$x^{10}$$
    $$2r=10$$
    $$r=5$$
    $$T_{6}=-\:^{10}C_{5}x^{10}$$ ...(a)
    $$T_{r+1}=(-1)^{r}\:^{10}C_{r}x^{10-2r}2^{r}$$...(ii)
    For the term independent of $$x$$
    $$2r=10$$
    $$r=5$$
    Substituting in (ii), we get
    $$T_{6}=-\:^{10}C_{5}2^{5}$$...(b)
    Hence $$\dfrac{a}{b}=1:32$$
  • Question 4
    1 / -0
    The $$3$$rd, $$4$$th and $$5$$th terms in the expansion of $$ (1+x)^n $$ are $$60, 160$$ and $$240$$ respectively, then $$ x = $$

    Solution
    It is given that in $$(1+x)^{n}$$
    $$T_{3}=\:^nC_{2}x^2=60$$
    $$T_{4}=\:^nC_{3}x^3=160$$
    $$T_{5}=\:^nC_{4}x^4=240$$
    Therefore taking ratios we get
    $$\displaystyle \frac{\:^nC_{2}x^2}{\:^nC_{3}x^3}=\frac{3}{8}$$

    $$\displaystyle \frac{3}{x(n-2)}=\frac{3}{8}$$
    $$8=nx-2x$$
    $$nx=2x+8$$ $$...(i)$$

    $$\displaystyle \frac{\:^nC_{3}x^3}{\:^nC_{4}x^4}=\frac{160}{240}$$

    $$\displaystyle \frac{4}{x(n-3)}=\frac{160}{240}$$
    $$\displaystyle \frac{1}{nx-3x}=\frac{40}{240}$$
    $$6=nx-3x$$
    $$nx=3x+6$$ $$...(ii)$$
    Substituting the value of $$nx$$ in equation $$(i)$$ we get
    $$3x+6=2x+8$$
    $$x=2$$
  • Question 5
    1 / -0
    Coefficient of $$ x^{16} $$ in $$ (1+x+x^2)(1-x)^{15} $$
    Solution
    $$(1+x+x^2)(1-x)^{15}$$
    $$=(1+x+x^2)(1-15x+\:^{15}C_{2}x^2-\:^{15}C_{3}x^3...-\:^{15}C_{15}x^{15})$$
    Hence coefficient of $$x^{16}$$ will be.
    $$-\:^{15}C_{15}x.x^{15}+\:^{15}C_{14}x^2.x^{14}$$
    Hence coefficient will be.
    $$=-1+15$$
    $$=14$$
  • Question 6
    1 / -0
    The number of terms in the expansion of $$ (1+5\sqrt{2}x)^9 + (1-5\sqrt{2}x)^9 $$ is :
    Solution
    $$(1+5\sqrt{2}x)\:^{9}+(1-5\sqrt{2}x)\:^{9}$$
    Applying binomial theorem for expansion of the following
    $$=1+(5\sqrt{2}x)\:(^{9}C_{1})+(5\sqrt{2}x)^{2}\:(^{9}C_{2})...(\:^{9}C_{9}(5\sqrt{2}x)^{9})$$
    $$+1-(5\sqrt{2}x)\:(^{9}C_{1})+(5\sqrt{2}x)^{2}\:(^{9}C_{2})...-(\:^{9}C_{9}(5\sqrt{2}x)^{9})$$
    $$=2[1+(5\sqrt{2}x)\:^2\:(^{9}C_{2})+(5\sqrt{2}x)\:^4\:(^{9}C_{4})...(5\sqrt{2}x)\:^8(\:^{9}C_{8})]$$
    The powers of $$5\sqrt{2}x$$ are in $$A.P$$
    $$0,2,4,6,8$$
    Hence including the term $$1\:or\: x^0$$ there are $$\dfrac{9+1}{2} = 5$$ terms.
    Hence, answer is $$A.$$
  • Question 7
    1 / -0
    Coefficient of $$ x^5 $$ in $$ (1+x^2)^5(1+x)^4 $$ is
    Solution
    $$(1+x)^{4}(1+x^2)^{5}$$
    $$(1+4x+6x^2+4x^3+x^4)(1+5x^2+10x^{4}+10x^6+5x^8+x^{10})$$
    Hence coefficient of $$x^5$$ will be
    $$4(10)+4(5)$$
    $$=40+20$$
    $$=60$$

  • Question 8
    1 / -0
    A. $$ ^{2n}C_n = C_0^2 + C_1^2 + C_2^2 + C_3^2 + \dots \dots + C_n^2 $$

    B. $$ ^{2n}C_n = $$ term independent of $$x$$ in $$ (1+x)^n \left(1+\frac{1}{x} \right)^n $$

    C. $$ ^{2n}C_n = \dfrac{1.3.5.7 \ldots \ldots (2n-1)}{n!} $$ then
    Solution
    $$\:^{2n}C_{n}$$ $$=\dfrac{2n!}{(n!)^{2}}$$

    $$=\dfrac{2^{n}(1.3.5..(2n-1))}{n!}$$

    Hence option C is false.

    Consider Option B
    $$(1+x)^{n}\cdot (1+\dfrac{1}{x})^{n}$$
    $$=\dfrac{(1+x)^{n}(1+x)^{n}}{x^{n}}$$
    $$=\dfrac{(1+x)^{2n}}{x^{n}}$$.

    The general term in this case is
    $$T_{r+1}=\:^{2n}C_{r}x^{r}.x^{-n}$$
    $$=\:^{2n}C_{r}x^{r-n}$$
    For term independent of $$x$$ 
    $$r-n=0$$
    $$n=r$$.

    Hence the term independent of $$x$$ will be
    $$\:^{2n}C_{n}$$
    Thus B is true.

    Consider option A.
    Consider the following series.
    $$\:^{m}C_{0}\:^{n}C_{r}+\:^{m}C_{1}\:^{n}C_{r-1}+...\:^{m}C_{r}\:^{n}C_{0}$$
    $$=$$ Coefficient of $$x^{r}$$ in $$(1+x)^{m}.(x+1)^{n}$$
    $$=$$ Coefficient of $$x^{r}$$ in $$(1+x)^{m+n}$$
    $$=\:^{m+n}C_{r}$$

    In the above case, $$r=n$$ and $$m=n$$
    Hence, $$\:^{n}C_{0} ^{2}+\:^{n}C_{1} ^{2}+\:^{n}C_{2} ^{2}+\:^{n}C_{3} ^{2}+..\:^{n}C_{n} ^{2}$$
    $$=\:^{n}C_{0}\:^{n}C_{n}+\:^{n}C_{1}\:^{n}C_{n-1}+...\:^{n}C_{2}\:^{n}C_{n-2}$$
    $$=\:^{2n}C_{n}$$

    Hence A is also true.
  • Question 9
    1 / -0
    The total number of terms in the expansion of $$ (x+a)^{100}+(x-a)^{100} $$ after simplification is

    Solution
    $$(x+a)\:^{100}+(x-a)\:^{100}$$
    Applying binomial theorem for expansion of the following
    $$(x+a)\:^{100}+(x-a)\:^{100}$$
    $$=x^{100}+x^{99}\:(^{100}C_{1}a)+x^{98}\:(^{100}C_{2}a^2)...(\:^{100}C_{100}a^{100})$$
    $$+x^{100}-x^{99}\:(^{100}C_{1}a)+x^{98}\:(^{100}C_{2}a^2)...(\:^{100}C_{100}a^{100})$$
    $$=2[x^{100}+x^{98}\:(^{100}C_{2}a^2)+x^{96}\:(^{100}C_{4}a^4)...(\:^{100}C_{100}a^{100})]$$
    The powers of $$a$$ are in A.P
    $$a^0,a^2,a^4,a^6...a^{100}$$
    $$0,2,4,6...100$$
    Hence, including the term $$a^0\:or\:x^{100}$$ there are $$51$$ terms.
    Hence, answer is $$B.$$

  • Question 10
    1 / -0
    Coefficient of $$ x^{10} $$ in $$ (1+2x^4)(1-x)^8 $$ is
    Solution
    $$(1+2x^4)(1-x)^{8}$$
    $$=(1+2x^4)(1-8x+\:^{8}C_{2}x^2-\:^{8}C_{3}x^3...+\:^{8}C_{2}x^8)$$
    Hence coefficient of $$x^{10}$$ will be.
    $$2\times\:^{8}C_{6}x^4(x^6)$$
    Hence coefficient of $$x^{10}$$
    $$=2\:^{8}C_{2}$$
    $$=2(\displaystyle \frac{8\times7}{2})$$
    $$=56$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now