Self Studies

Binomial Theorem Test - 14

Result Self Studies

Binomial Theorem Test - 14
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Sum of the coefficients of $$ (1 - x)^{25} $$ is

    Solution
    $$(1-x)\:^{25}$$ $$=1-\:^{25}C_{1}x+\:^{25}C_{2}x^2-\:^{25}C_{3}x^3+\:^{25}C_{4}x^4-\:^{25}C_{5}x^5...-\:^{25}C_{25}x^{25}$$
    Putting $$x=1$$, we get
    $$0=1-\:^{25}C_{1}+\:^{25}C_{2}-\:^{25}C_{3}+\:^{25}C_{4}-\:^{25}C_{5}...-\:^{25}C_{25}$$
    Hence, sum of coefficients is $$0$$
  • Question 2
    1 / -0
    The number of rational terms in the expansion of $$ \left ( \sqrt{3}+\sqrt[4]{5} \right )^{124} $$ is
    Solution
    $$T_r = {^{124}C_{r-1}}(\sqrt 3)^{125-r}(\sqrt[4]{5}) ^{r-1} $$
    When both the terms are rational , $$T_r$$ will be rational. 
    Hence, $$\dfrac{125-r}{2} $$ and $$\dfrac{r-1}{4} $$ both must be integers.
    Therefore, $$r$$ must be of the form $$4k+1$$, where $$k$$ is an integer. 
    There are $$125$$ terms in the expansion. Hence, $$k$$ can assume values from $$0$$ to $$31.$$ Hence, there are $$32$$ values of $$k$$ and $$32$$ rational terms in the expansion.
    Hence, option $$B$$ is correct.
  • Question 3
    1 / -0
    $$ ^nC_0 + ^nC_2 + ^nC_4 + \dots \dots + ^nC_{2[n/2]} $$, where [ ] denotes greatest integer
    Solution
    The real sol. is taking a binomial = $$(1+x)^{n} = ^{n}C_0 +  ^{n}C_1x + ^{n}C_2x^2 + ......$$
    and now taking                              $$(1-x)^{n} = ^{n}C_0  - ^{n}C_1x + ^{n}C_2x^2 - ......$$ 
    Now adding both and putting $$x = 1$$, we get $$2^n = 2( ^{n}C_0 + ^{n}C_2 + ^{n}C_4 + ....)$$
    => $$2^{n-1} $$ = required expression
  • Question 4
    1 / -0
    If $$ (1+ax)^n = 1+9x+27x^2+ \dots \dots $$ then $$ (a, n) = $$
    Solution
    We know $$T_{r+1}=\:^nC_{r}a^{n-r}b^r$$
    Applying to the above question, we get
    $$T_{2}=9x$$
    Therefore $$9x=\:^nC_{1}ax$$
    $$9=an$$ ...(i)
    And $$T_{3}=27x^2$$
    $$27x^2=\:^nC_{2}a^2x^2$$
    $$\dfrac{n(n-1)}{2}a^2=27$$
    $$n(n-1)a^2=54$$ ...(ii)
    $$\therefore 9(an-a)=54$$ ...from (i)
    $$an-a=6$$
    $$9-6=a$$
    $$\therefore a=3$$
    Substituting in (i), we get
    Therefore $$n=3$$ ...(from (i))
  • Question 5
    1 / -0
    $$ \displaystyle \frac{^{15}C_1}{^{15}C_0}+2.\frac{^{15}C_2}{^{15}C_1}+3.\frac{^{15}C_3}{^{15}C_2}+\ldots+15.\frac{^{15}C_{15}}{^{15}C_{14}} = $$
    Solution
    As in the hint , This is the first step. Now we have to find sum of $$r(n - r + 1)/r$$ = sum of $$(n - r + 1)$$ = 
    $$n*n - n(n+1)/2 + n = n(n+1)/2$$. Here n= 15 which gives answer 120.
  • Question 6
    1 / -0
    $$ C_0^2+3.C_1^2+5.C_2^2 + \ldots\ldots +(2n+1).C_n^2 = $$
    Solution
    $$(1+x)^n=C_0+C_1 x+C_2 x^2+\dots +C_n x^n$$ ------(1)
    $$\displaystyle(1+\frac{1}{x})^n=C_0+C_1\frac{1}{x}+C_2\frac{1}{x^2}+\dots +C_n\frac{1}{x^n}$$ -----(2)
    Multiplying both sides, we get
    $$\displaystyle\frac{(1+x)^{2n}}{(x)^n}=\sum{C_0^{2}}+x\sum{C_0C_1}+x^2\sum{C_0C_2}+ ....+x^r\sum{C_0C_r}+...$$
    The various sums  are the coefficients of $$x^0,x,x^2,....x^r$$ in $$\displaystyle\frac{(1+x)^{2n}}{(x)^n}$$ or coefficients of $$x^n,x^{n+1},x^{n+2},....,x^{n+r}$$ in the expansion of $$(1+x)^{2n}$$ which occur in  $$T_{n+1},T_{n+2}....$$
    Clearly the coefficent of $$x^n$$ in $$(1+x)^{2n}$$ is $$^{2n}C_n$$
    $$\therefore  C_0^2+C_1^2+C_2^2 + \ldots\ldots +C_n^2 = ^{2n}C_n $$
    Let $$S= C_0^2+3.C_1^2+5.C_2^2 + \ldots\ldots +(2n+1).C_n^2 $$ ----(3)
    $$S=(2n+1).C_n^2+(2n-1).C_{n-1}^2+ \ldots\ldots+C_0^2$$ -----(4)
    Adding (3) and (4) gives
    $$2S=(2n+2)\left[C_0^2+C_1^2+C_2^2 + \ldots\ldots +C_n^2\right]$$
    $$\therefore  S= (n+1). ^{2n}C_n $$
    Hence, option C.
  • Question 7
    1 / -0
    Sum of the coefficients in the expansion of $$ (5x-4y)^n $$ where $$n$$ is a positive integer is
    Solution
    Substituting $$x=1$$ and $$y=1$$ in the above expression we get the sum of the binomial coefficients as
    $$(5x-4y)^{n}$$
    $$=(5-4)^{n}$$ (substituting x=1 and y=1)
    $$=(1)^{n}$$
    $$=1$$
    Hence, answer is $$A.$$
  • Question 8
    1 / -0
    If $$n$$ is a positive integer, then the coefficient of $$ x^n $$ in the expansion of $$ \dfrac{(1+2x)^n}{1-x} $$ is
    Solution
    To find the coefficient of $$x^{n}$$ in the expansion of $$\dfrac{(1+x)^{2n}}{1-x}$$
    This can be written as $${(1+x)^{2n}}(1-x)^{-1}$$

    $$= \left ( \binom{2n}{0} +  \binom{2n}{1}x +   \binom{2n}{2}x^{2} +   \binom{2n}{3}x^{3}+............+   \binom{2n}{n}  x^{n}  \right )  \left ( 1+ x+x^{2}+ x^{3}+x^{4}+.. . \right ) $$

    On Multiplying this, we can find the coefficient of $$x^{n}$$ as summation  of
    $$ = \binom{2n}{0} + \binom{2n}{1} + \binom{2n}{2} .......+\binom{2n}{n} $$
    $$ =  3^{n} $$
  • Question 9
    1 / -0
    $$ (1+x)^{15}=a_0+a_1x+\ldots\ldots+a_{15}x^{15} \Rightarrow \sum_{r=1}^{15}r\frac{a_r}{a_{r-1}}= $$
    Solution
    $$ ^nC_r/^nC_{r-1} = n -r + 1/r $$. Now we have to find sum of r(n - r + 1)/r = sum of(n - r + 1) = 
    n*n - n(n+1)/2 + n = n(n+1)/2. Here n= 15 which gives answer 120.
  • Question 10
    1 / -0
    The sum of the coefficients in the expansion of $$ (1-x)^{10} $$

    Solution
    $$(1-x)^{10}$$ $$=1-\:^{10}C_{1}x+\:^{10}C_{2}x^2+...\:^{10}C_{10}x^{10}$$
    Substituting $$x=1$$, we get sum of coefficients as
    $$1-\:^{10}C_{1}+\:^{10}C_{2}+...\:^{10}C_{10}$$
    $$=(1-1)^{10}$$
    $$=0$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now