Self Studies

Binomial Theore...

TIME LEFT -
  • Question 1
    1 / -0

    Sum of the coefficients of $$ (1 - x)^{25} $$ is

  • Question 2
    1 / -0

    The number of rational terms in the expansion of $$ \left ( \sqrt{3}+\sqrt[4]{5} \right )^{124} $$ is

  • Question 3
    1 / -0

    $$ ^nC_0 + ^nC_2 + ^nC_4 + \dots \dots + ^nC_{2[n/2]} $$, where [ ] denotes greatest integer

  • Question 4
    1 / -0

    If $$ (1+ax)^n = 1+9x+27x^2+ \dots \dots $$ then $$ (a, n) = $$

  • Question 5
    1 / -0

    $$ \displaystyle \frac{^{15}C_1}{^{15}C_0}+2.\frac{^{15}C_2}{^{15}C_1}+3.\frac{^{15}C_3}{^{15}C_2}+\ldots+15.\frac{^{15}C_{15}}{^{15}C_{14}} = $$

  • Question 6
    1 / -0

    $$ C_0^2+3.C_1^2+5.C_2^2 + \ldots\ldots +(2n+1).C_n^2 = $$

  • Question 7
    1 / -0

    Sum of the coefficients in the expansion of $$ (5x-4y)^n $$ where $$n$$ is a positive integer is

  • Question 8
    1 / -0

    If $$n$$ is a positive integer, then the coefficient of $$ x^n $$ in the expansion of $$ \dfrac{(1+2x)^n}{1-x} $$ is

  • Question 9
    1 / -0

    $$ (1+x)^{15}=a_0+a_1x+\ldots\ldots+a_{15}x^{15} \Rightarrow \sum_{r=1}^{15}r\frac{a_r}{a_{r-1}}= $$

  • Question 10
    1 / -0

    The sum of the coefficients in the expansion of $$ (1-x)^{10} $$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now