Self Studies

Binomial Theorem Test - 15

Result Self Studies

Binomial Theorem Test - 15
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$n$$ is a positive integer, then the coefficient of $$ x^n $$ in the expansion of $$ \dfrac{(1+x)^n}{1-x} $$ is

    Solution
    To find the coefficient of $$x^{n}$$ in the expansion of $$\dfrac{(1+x)^{n}}{1-x}$$.

    This can be written as $${(1+x)^{n}}(1-x)^{-1}$$

    $$= \left ( \binom{n}{0} +  \binom{n}{1}x +   \binom{n}{2}x^{2} +   \binom{n}{3}x^{3}+............+   \binom{n}{n}  x^{n}  \right )  \left ( 1-x+x^{2}-x^{3}+x^{4}-......... \right ) $$

    On Multiplying this, we can find the coefficient of $$x^{n}$$ as 

    Summation of $$ =   C_{0} +   C_{1}+  C_{2}+ ............  C_{n}$$ $$ =  2^{n} $$
  • Question 2
    1 / -0
    $$ ^5C_0+2.^5C_1+2^2.^5C_2+2^3.^5C_3 +2^4.^5C_4+2^5.^5C_5 = $$


    Solution
    Just calculate it by substituting the values of $$ ^5C_1 , ^5C_2$$  etc as $$5, 10$$ and just add them to get $$243$$.
  • Question 3
    1 / -0
    Evaluate the following:
    $$ C_1+2C_2+3C_3+\ldots\dots+nC_n  $$
    Solution
    Consider the expansion

    $$(1 + x)^n = \ ^n C_0 + \ ^nC_1 x + \ ^nC_2 x^2 ..... + \ ^nC_n x^n$$

    derivate w.r.t 'x'

    $$n(1 + x)^{n-1} = 0 + \ ^nC_1 + 2 \ ^nC_2 x .... + n \,{}^nC_n x^{n - 1}$$

    Put $$x = 1$$

    $$n(1 + 1)^{n- 1} = \ ^nC_1 + 2 . \ ^nC_2 ... + n . \ ^nC_n$$

    $$n2 ^{n - 1} = C_1 + 2 C_2 .... + nC_n$$
  • Question 4
    1 / -0
    If $$ n\geq2 $$ then $$ (a-1).C_1-(a-2).C_2+(a-3).C_3-\ldots\ldots(-1)^{n-1}(a-n).C_n= $$
    Solution
    $$(a-1)C_{1}-(a-2)C_{2}+(a-3)C_{3}-...(-1)^{n}(a-n)C_{n}$$
    $$=[aC_{1}-aC_{2}+aC_{3}...]-[C_{1}-2C_{2}+C_{3}...]$$
    $$=a(C_{1}-C_{2}+C_{3}...)-(C_{1}-2C_{2}+C_{3}...)$$
    $$=a(1+(-1+C_{1}-C_{2}+C_{3}...))-(C_{1}-2C_{2}+C_{3}...)$$
    $$=a+a(-1+C_{1}-C_{2}+C_{3}...)-(C_{1}-2C_{2}+C_{3}...)$$
    $$=a+-a(1-x)^{n}|_{x=1}-n(1-x)^{n-1}|_{x=1}$$
    $$=a$$
  • Question 5
    1 / -0
    If $$a$$ is the coefficient of the middle term in the expansion of $$(1+x)^{2n}$$ and $$b, c$$ are the coefficients of the two middle terms in the expansion of $$(1+x)^{2n-1}$$ then 
    Solution
    For $$(1+x)\:^{2n}$$
    Middle term $$=\dfrac{N}{2}+1$$  since 2n is even
    $$=\dfrac{2n}{2}+1$$
    $$=(n+1)^{th}$$ term
    Now consider the following
    $$T_{r+1}=\:^nC_{r}a^{n-r}b^r$$...(i)
    Where $$T$$ represents the term
    Here the middle term is the $$(n+1)^{th}$$ term
    Hence $$r+1=n+1$$
    $$r=n$$
    Substituting in (i), we get
    $$\:^{2n}C_{n}1^{2n-n}x^{n}$$
    $$=\:^{2n}C_{n}x^{n}$$
    Therefore $$a=\:^{2n}C_{n}$$ because a is the coefficient ...(a)

    Consider $$(1+x)\:^{2n-1}$$
    Since $$2n-1$$ is odd the middle terms are $$(\dfrac{N+1}{2})$$th and $$(\dfrac{N+1}{2}+1)$$ th terms
    Now consider the following
    $$T_{r+1}=\:^nC_{r}a^{n-r}b^r$$...(ii)
    Where $$T$$ represents the term
    Here the middle terms are the $$(n)^{th}$$ term and $$(n+1)^{th}$$ term.
    Hence $$r+1=n+1$$ and $$r+1=n$$
    $$r=n$$ and $$r=n-1$$
    For $$r=n$$
    $$T_{r+1}=\:^{2n-1}C_{n}1^{n-1}x^{n}$$
    $$=\:^{2n-1}C_{n}x^{n}$$
    Hence, $$b=\:^{2n-1}C_{n}$$, since $$b$$ is the coefficient ...(b)

    Similarly for $$r=n-1$$
    $$T_{r+1}=\:^{2n-1}C_{n-1}1^{n}x^{n-1}$$
    $$=\:^{2n-1}C_{n-1}x^{n-1}$$
    Hence $$c=\:^{2n-1}C_{n-1}$$ since $$c$$ is the coefficient ...(c)
    From $$a,b,c$$, we get
    $$\:^{2n}C_{n}=\:^{2n-1}C_{n}+\:^{2n-1}C_{n-1}$$
    $$a=b+c$$
  • Question 6
    1 / -0
    The number of rational terms in the expansion of  $$(1+\sqrt{2}+\sqrt[3]{3})^{6}$$ is
    Solution
    $$(1+2^{1/2}+3^{1/3})^{6}$$
    $$=[(1+2^{1/2}+3^{1/3})^{3}]^{2}$$
    $$=[(1+(2^{1/2}+3^{1/3})^{3}+3(2^{1/2}+3^{1/3})^{2}+3(2^{1/2}+3^{1/3})]^{2}$$
    $$=1+(2^{1/2}+3^{1/3})^{6}+9(2^{1/2}+3^{1/3})^{4}+9(2^{1/2}+3^{1/3})^{2}+2(2^{1/2}+3^{1/3})^{3}+\\ 6(2^{1/2}+3^{1/3})^{5}+18(2^{1/2}+3^{1/3})^{3}+6(2^{1/2}+3^{1/3})$$
    Hence the rational terms are
    $$1,24,4,12,6,9,8$$
    Hence, there are total $$7$$ rational terms

  • Question 7
    1 / -0
    Coefficient of $$x$$ in the expansion of $$(1-2\displaystyle {x}^{3}+3{x}^{5})(1+\frac{1}{{x}})^{8}$$ is
    Solution
    $$(1-2x^3+3x^5)(1+x^{-1})^{8}$$

    $$=(1-2x^3+3x^5)(1+{}^8C_1x^{-1}+\:^{8}C_{2}x^{-2}+\:^{8}C_{3}x^{-3}...+\:^{8}C_{8}x^{-8})$$.....$$(1)$$

    Hence coefficient of $$x$$ will be

    $$-2\times \:^{8}C_{2}+3\times \:^{8}C_{4}$$   since after solving (1) we get $$x$$ at $$x^{3-2}$$  and $$x^{5-4}$$

    $$=-2\times \dfrac{8.7}{2}+3\times \dfrac{8.7.6.5}{4!}$$

    $$=-56+\dfrac{8.7.6.5}{2.4}$$

    $$=210-56$$

    $$=154$$
  • Question 8
    1 / -0

    The coefficient of $$\displaystyle \frac{1}{{x}}$$ in the expansion of $$(1+\displaystyle x)^{{n}}(1+\frac{1}{{x}})^{{n}}$$ is :
    Solution
    Given, $$(1+x)\:^n(1+\dfrac{1}{x})\:^n$$
    $$=\dfrac{(1+x)^{2n}}{x^{n}}$$ ...(i)
    Therefore$$T_{r+1}=\dfrac{\:^{2n}C_{r}x^{r}}{x^{n}}$$
    $$=\:^{2n}C_{r}x^{r-n}$$ ...(ii)
    For coefficient of $$ x^{-1}$$
    $$r-n=-1$$
    $$r=n-1$$
    Substituting in (ii), we get
    $$T_{n-2}=\:^{2n}C_{n-1}x^{-1}$$
    $$=\dfrac{2n!}{(n+1)!(n-1)!\:x}$$
  • Question 9
    1 / -0
    The middle term in the expansion of $$(1-3{x}+3{x}^{2}-{x}^{3})^{2{n}}$$ is
    Solution
    Given, $$(1-3x+3x^2-x^3)\:^{2n}$$

    $$=[(1-x)\:^3]\:^{2n}$$

    $$=(1-x)\:^{6n}$$

    Middle term $$=\dfrac{N}{2}+1$$

    $$=\dfrac{6n}{2}+1$$

    $$=(3n+1)^{th}$$ term

    Now consider the following,

    $$T_{r+1}=\:^nC_{r}a^{n-r}b^r$$...(i)

    Where $$T$$ represents the term

    Here the middle term is the $$(3n+1)^{th}$$ term.

    Hence, $$r+1=3n+1$$

    $$r=3n$$

    Substituting in (i), we get

    $$(-1)\:^{3n}\:^{6n}C_{3n}1^{6n-3n}x^{3n}$$

    $$=(-1)\:^{3n}\:^{6n}C_{3n}x^{3n}$$

    $$=\:^{6n}C_{3n}(-x)\:^{3n}$$

    Hence answer is A
  • Question 10
    1 / -0
    The coefficient of $${x}^{p}$$ the expansion of $$(\displaystyle {x}^{2}+\frac{1}{{x}})^{{n}}$$, when it exists is
    Solution
    $$(x^2+x^{-1})^{2n}$$
    $$T_{r+1}=\:^{2n}C_{r}x^{4n-3r}$$ ...(i)
    For the coefficient of $$x^p$$
    $$4n-3r=p$$
    $$\dfrac{4n-p}{3}=r$$
    Substituting in equation (i), we get
    $$T_{(\frac{4n-p}{3})+1}=\:^{2n}C_{\frac{4n-p}{3}}x^{p}$$
    Hence, coefficient of $$x^p$$ in the above binomial expansion is $$\:^{2n}C_{\frac{4n-p}{3}}$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now