Self Studies

Binomial Theore...

TIME LEFT -
  • Question 1
    1 / -0

    If $$n$$ is a positive integer, then the coefficient of $$ x^n $$ in the expansion of $$ \dfrac{(1+x)^n}{1-x} $$ is

  • Question 2
    1 / -0

    $$ ^5C_0+2.^5C_1+2^2.^5C_2+2^3.^5C_3 +2^4.^5C_4+2^5.^5C_5 = $$


  • Question 3
    1 / -0

    Evaluate the following:
    $$ C_1+2C_2+3C_3+\ldots\dots+nC_n  $$

  • Question 4
    1 / -0

    If $$ n\geq2 $$ then $$ (a-1).C_1-(a-2).C_2+(a-3).C_3-\ldots\ldots(-1)^{n-1}(a-n).C_n= $$

  • Question 5
    1 / -0

    If $$a$$ is the coefficient of the middle term in the expansion of $$(1+x)^{2n}$$ and $$b, c$$ are the coefficients of the two middle terms in the expansion of $$(1+x)^{2n-1}$$ then 

  • Question 6
    1 / -0

    The number of rational terms in the expansion of  $$(1+\sqrt{2}+\sqrt[3]{3})^{6}$$ is

  • Question 7
    1 / -0

    Coefficient of $$x$$ in the expansion of $$(1-2\displaystyle {x}^{3}+3{x}^{5})(1+\frac{1}{{x}})^{8}$$ is

  • Question 8
    1 / -0


    The coefficient of $$\displaystyle \frac{1}{{x}}$$ in the expansion of $$(1+\displaystyle x)^{{n}}(1+\frac{1}{{x}})^{{n}}$$ is :

  • Question 9
    1 / -0

    The middle term in the expansion of $$(1-3{x}+3{x}^{2}-{x}^{3})^{2{n}}$$ is

  • Question 10
    1 / -0

    The coefficient of $${x}^{p}$$ the expansion of $$(\displaystyle {x}^{2}+\frac{1}{{x}})^{{n}}$$, when it exists is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now