Self Studies

Binomial Theorem Test - 16

Result Self Studies

Binomial Theorem Test - 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The number of terms in the expansion of $$\left [ (a+4b)^{3}(a-4b)^{3} \right ]^{2}$$ are
    Solution
    $$[(a+4b)\:^3(a-4b)\:^3]\:^2$$
    $$=[(a+4b)(a-4b)]\:^6$$
    $$=[a^2-16b^2]\:^6$$
    Hence total number of terms is $$n+1$$
    Here $$n=6$$
    Therefore, total number of terms is $$7.$$
  • Question 2
    1 / -0
    The number of terms in the expansion of 

    $$(a_{1}+b_{1})(a_{2}+b_{2}).....(a_{n}+b_{n})$$
    Solution
    Each bracket in the above expansion contains 2 elements
    Therefore
    $$2$$ brackets will have $$2^2=4 $$ elements
    $$3$$ brackets will have $$2^3=8$$ elements
    $$4$$ brackets will have $$2^4=16 $$ elements
    :
    :
    $$n$$  brackets will have $$2^n$$ elements
    Hence, there will be $$2^n$$ elements
  • Question 3
    1 / -0
    (i) The no.of distinct terms in the expansion of $$({x}_{1}+{x}_{2}+\ldots.+{x}_{{n}})^{3}$$ is $$n+2{c}_{3}$$

    (ii) The no. of irrational terms in the expansion $$(2^{1/5}+3^{1/10})^{55}$$ is $$55$$
    Solution
    Basic questions. $$^{n+r-1}C_r$$ is $$1^{st}$$ one and $$2^{nd}$$ is $$\dfrac {55}{l}l, (5,10) + 1$$ which is $$6$$, hence is wrong.
  • Question 4
    1 / -0
    The sum of the coefficients of the middle terms of $$(1+{x})^{2{n}-1}$$ is
    Solution
    Consider: $$(1+x)^{2n-1}$$
    Since $$2n-1$$ is odd, the middle terms are $$\left(\dfrac{2n-1+1}{2}\right)^{th}$$ and $$\left(\dfrac{2n-1+1}{2}+1\right)^{th}$$ terms
    Now, consider the following
    $$T_{r+1}=\:^nC_{r}a^{n-r}b^r$$...(i)
    Where $$T$$ represents the term
    Here the middle terms are the $$n^{th}$$ term and $$(n+1)^{th}$$ term.
    $$T_{n+1}=\ ^{2n-1}C_{n}1^{n-1}x^{n}$$ $$=\:^{2n-1}C_{n}x^{n}$$
    Hence, the coefficient is $$\:^{2n-1}C_{n}$$      ...(1)

    $$T_{n}=\ ^{2n-1}C_{n-1}1^{n}x^{n-1}$$$$=\:^{2n-1}C_{n-1}x^{n-1}$$
    Hence, $$\:^{2n-1}C_{n-1}$$ is the coefficient     ...(2)

    Therefore, sum of the coefficients of the middle terms is
    $$\ ^{2n-1}C_{n}+\ ^{2n-1}C_{n-1}$$
    $$=\ ^{2n}C_{n}$$

    Hence, option D.
  • Question 5
    1 / -0
    If $$x + y = 1$$, then $$\displaystyle \sum_{r=0}^{n}r^{n}C_{r}x^{r}.y^{n-r}=$$
    Solution
    $$\displaystyle \sum_{r=0} ^{n}r\:^{n}C_{r}x^ry^{n-r}$$
    $$=\displaystyle \sum_{r=0} ^{n}r\frac{n!}{(n-r)!r!}x^ry^{n-r}$$
    $$=nx(y+x)^{n-1}$$
    $$=nx(1)^{n-1}$$ ... given in the above question
    $$=nx$$
    Hence, the answer is Option C
  • Question 6
    1 / -0
    In the expansion of $$\left ( 2.2^{\dfrac{2x}{3}}+2^{\dfrac{-x}{3}} \right )^{n}$$ the sum of the last four binomial coefficients exceeds the sum of the first three binomial coefficients by 20 and if the middle term is-the numerically largest term, then x belongs to



    Solution
    Applying the above given condition we get
    $$(\:^nC_{n}+\:^nC_{n-1}+\:^nC_{n-2}+\:^nC_{n-3})-(\:^nC_{0}+\:^nC_{1}+\:^nC_{2})=20$$
    By using properties of binomial coefficients the above expression is reduced to
    $$\:^nC_{n-3}=20$$
    $$\:^nC_{3}=20$$
    $$\:^nC_{3}=\:^6C_{3}$$
    Hence $$n=6$$.
    It is given that the middle term is the largest term.
    Hence $$T_{3+1}$$
    $$=T_{4}=$$largest term.
    Therefore $$\dfrac{T_{4}}{T_{3}}>1$$ which implies
    $$\dfrac{2}{3}^{2}>2^{x}$$
    $$2log2-2log3>xlog2$$
    $$2-2log_{2}3>x$$ ...(i)

    Now $$\dfrac{T_{4}}{T_{5}}>1$$
    Which is simplified as $$2^{x}>\dfrac{1}{4}$$
    $$xlog2>-2log2$$
    $$x>-2$$...(ii)
    From i and ii we get
    $$x\epsilon(-2,2-2log_{2}3)$$
    Hence answer is Option D
  • Question 7
    1 / -0
    If $$x + y = 1$$ then $$\displaystyle \sum_{r=0}^{n}r^{2}$$  $$^{n}C_{r}x^{r}y^{n-r}$$
    Solution
    $$\displaystyle \sum_{r=0}^{n}r^{2}$$  $$^{n}C_{r}x^{r}y^{n-r}$$
    $$\displaystyle=\sum_{r=0} ^{n}[r(r-1)+r]$$ $$^{n}C_{r}x^ry^{n-r}$$
    $$\displaystyle =\sum_{r=0} ^{n}(r(r-1))\cdot\ ^{n}C_{r}x^ry^{n-r}+\sum_{r=0}^{n}r\cdot\ ^{n}C_{r}x^ry^{n-r}$$
    $$\displaystyle\sum_{r=0} ^{n}(r(r-1))\cdot\ ^{n}C_{r}x^ry^{n-r} = x^2 \dfrac{d^2}{dx^2}(\sum_{r=0}^{n}$$ $$^{n}C_{r}x^ry^{n-r}) = x^2\dfrac{d^2}{dx^2}(x+y)^n = n(n - 1)x^2$$
    $$\displaystyle\sum_{r=0}^{n}r\cdot\ ^{n}C_{r}x^ry^{n-r} = x \dfrac{d}{dx}(\sum_{r=0}^{n}$$ $$^{n}C_{r}x^ry^{n-r}) = x\dfrac{d}{dx}(x+y)^n = nx$$
    $$\therefore\displaystyle \sum_{r=0} ^{n}(r(r-1))\cdot\ ^{n}C_{r}x^ry^{n-r}+\sum_{r=0}^{n}r\cdot\ ^{n}C_{r}x^ry^{n-r}$$
    $$=n(n-1)x^2+nx$$
    $$=nx[x(n-1)+1]$$
    $$=nx[nx-x+(x+y)]$$ ...it is given in the question that $$x+y=1$$
    $$=nx[nx+y]$$
    Hence, the answer is Option C
  • Question 8
    1 / -0
    In the binomial expansion of $$(a - b)^{n}, n>5,$$ the sum of 5$$^{th}$$ and 6$$^{th}$$ terms is zero, then $$\displaystyle\frac{a}{b}$$ equals-
    Solution
    Since, in binomial expansion of $${ \left( a-b \right)  }^{ n },n\ge 5$$, 
    the sum of fifth and sixth term is equal to zero
    $$\therefore^{ n }{ { C }_{ 4 } }{ a }^{ n-4 }{ b }^{ 4 }+^{ n }{ { C }_{ 5 } }{ a }^{ n-5 }{ b }^{ 5 }=0$$
    $$\displaystyle\Rightarrow\frac { n! }{ \left( n-4 \right) !4! } { a }^{ n-4 }{ b }^{ 4 }-\frac { n! }{ \left( n-5 \right) !5! } { a }^{ n-5 }{ b }^{ 5 }=0$$
    $$\displaystyle\Rightarrow\frac { a }{ b } =\frac { n-4 }{ 5 } $$
  • Question 9
    1 / -0
    If the fourth term in the expansion of 

    $$\left(\sqrt{x^\dfrac{1}{\log x+1}}+x^\dfrac{1}{12}\right)^{6}$$ is equal to $$200$$ and $$x>1$$, then $$x$$ is
    Solution

    $$T_{r+1}=\:^nC_{r}a^{n-r}b^r$$
    Applying to the above question, we get
    $$T_{3+1}=\:^6C_{3}x^{\dfrac {3}{2(\log x+1)}}x^{\dfrac {3}{12}}$$
    $$=200$$
    $$20x^{\dfrac {3}{2(\log x+1)}}x^{\dfrac {3}{12}}=200$$
    $$x^{\dfrac {3}{2(\log x+1)}+\dfrac {1}{4}}=10$$
    Taking $$\log$$ to the base $$10$$  ($$\log_{10}$$) on both sides, we get
    $$\dfrac{3}{2(\log x+1)}+\dfrac{1}{4}=1$$
    $$\dfrac{3}{2(\log x+1)}=\dfrac{3}{4}$$
    $$4=2(\log_{10}x+1)$$
    $$2=\log_{10}x+1$$
    $$1=\log_{10}x$$
    Taking anti-logarithm, we get
    $$x=10$$

  • Question 10
    1 / -0
    If in the expansion of $$(\displaystyle \frac{1}{x}+x\tan x)^{5}$$, the ratio of $$4^{th}$$ term to the $$2^{nd}$$ term is $$\displaystyle \frac{2}{27}\pi^{4}$$, then the value of $${x}$$ can be
    Solution
    From the above given expression by applying binomial theorem, we get.
    $$T_{4}=\:^5C_{3}x\tan^3{x}$$
    $$=10x\tan^3{x}$$
    $$T_{2}=\:^5C_{1}x^{-3}\tan{x}$$
    $$=5x^{-3}\tan{x}$$
    Therefore $$\displaystyle \frac{T_{4}}{T_{2}}$$
    $$=\displaystyle \frac{10x\tan^3{x}}{5x^{-3}\tan{x}}$$
    $$=2x^4\tan^2x$$
    $$=\displaystyle \frac{2\pi^{4}}{27}$$
    $$x^4\tan^2x=\displaystyle \frac{\pi^{4}}{27}$$
    Taking root on both sides, we get
    $$x^2\tan x=\displaystyle \frac{\pi^2}{3\sqrt3}$$
    $$=\displaystyle \frac{\sqrt{3}\pi^2}{9}$$
    Therefore $$x^2=\displaystyle \frac{\pi^2}{9}$$ ...(i) and $$\tan x=\sqrt{3}$$...(ii)
    Both Eq(i) and Eq (ii) give $$x=\displaystyle \frac{\pi}{3}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now