Self Studies

Binomial Theore...

TIME LEFT -
  • Question 1
    1 / -0

    The number of terms in the expansion of $$\left [ (a+4b)^{3}(a-4b)^{3} \right ]^{2}$$ are

  • Question 2
    1 / -0

    The number of terms in the expansion of 

    $$(a_{1}+b_{1})(a_{2}+b_{2}).....(a_{n}+b_{n})$$

  • Question 3
    1 / -0

    (i) The no.of distinct terms in the expansion of $$({x}_{1}+{x}_{2}+\ldots.+{x}_{{n}})^{3}$$ is $$n+2{c}_{3}$$

    (ii) The no. of irrational terms in the expansion $$(2^{1/5}+3^{1/10})^{55}$$ is $$55$$

  • Question 4
    1 / -0

    The sum of the coefficients of the middle terms of $$(1+{x})^{2{n}-1}$$ is

  • Question 5
    1 / -0

    If $$x + y = 1$$, then $$\displaystyle \sum_{r=0}^{n}r^{n}C_{r}x^{r}.y^{n-r}=$$

  • Question 6
    1 / -0

    In the expansion of $$\left ( 2.2^{\dfrac{2x}{3}}+2^{\dfrac{-x}{3}} \right )^{n}$$ the sum of the last four binomial coefficients exceeds the sum of the first three binomial coefficients by 20 and if the middle term is-the numerically largest term, then x belongs to



  • Question 7
    1 / -0

    If $$x + y = 1$$ then $$\displaystyle \sum_{r=0}^{n}r^{2}$$  $$^{n}C_{r}x^{r}y^{n-r}$$

  • Question 8
    1 / -0

    In the binomial expansion of $$(a - b)^{n}, n>5,$$ the sum of 5$$^{th}$$ and 6$$^{th}$$ terms is zero, then $$\displaystyle\frac{a}{b}$$ equals-

  • Question 9
    1 / -0

    If the fourth term in the expansion of 

    $$\left(\sqrt{x^\dfrac{1}{\log x+1}}+x^\dfrac{1}{12}\right)^{6}$$ is equal to $$200$$ and $$x>1$$, then $$x$$ is

  • Question 10
    1 / -0

    If in the expansion of $$(\displaystyle \frac{1}{x}+x\tan x)^{5}$$, the ratio of $$4^{th}$$ term to the $$2^{nd}$$ term is $$\displaystyle \frac{2}{27}\pi^{4}$$, then the value of $${x}$$ can be

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now