Self Studies

Binomial Theorem Test - 30

Result Self Studies

Binomial Theorem Test - 30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Value of $$\sum { \sum _{ 0\le r<s\le n }^{  }{ { (r+s)\left( { C }_{ r }+{ C }_{ s } \right)  }^{ 2 } }  } $$ is
    Solution
    $$S=\sum _{ 0\le r }^{  }{ \sum _{ <s\le n }^{  }{ { (n-r+n-s)({ C }_{ n-r }-{ C }_{ n-s }) }^{ 2 } }  } $$
    $$=2n\sum _{ 0\le r }^{  }{ \sum _{ <s\le n }^{  }{ { ({ C }_{ r }+{ C }_{ s }) }^{ 2 } }  } -S$$
    $$\Rightarrow S=n\left[ (n-1)({ _{  }^{ 2n }{ C } }_{ n })+{ 2 }^{ 2n } \right] $$
  • Question 2
    1 / -0
    If $$A=^{ 2n }{ { C }_{ 0 } }.^{ 2n }{ { C }_{ 1 } }+^{ 2n }{ { C }_{ 1 } }^{ 2n-1 }{ { C }_{ 1 } }+^{ 2n }{ { C }_{ 2 } }^{ 2n-2 }{ { C }_{ 1 } }+...$$ then $$A$$ is
    Solution
    Given $$A=^{2n}C_0.^{2n}C_1+^{2n}C_1.^{2n-1}C_1+^{2n}C_2.^{2n-2}C_1+........$$

    we can write $$A$$ as summation .
    $$\Rightarrow A=\sum_{r=0}^{2n} .^{2n}C_r.^{2n-r}C_1=\sum_{r=0}^{2n}.\dfrac{(2n)!}{r!(2n-r)!}.\dfrac{(2n-r)!}{(2n-r-1)!1!}=\sum_{r=0}^{2n}\dfrac{(2n)!}{r!(2n-r-1)!}=2n\sum_{r=0}^{2n}.^{2n-1}C_r$$
                                                                                                                                                                          $$= 2n.2^{2n-1}=n.2^{2n}$$.

    $$\therefore A=n.2^{2n}$$
  • Question 3
    1 / -0
    The coefficient of $${ x }^{ 9 }$$ in the expansion of $${ \left( { x }^{ 3 }+\cfrac { 1 }{ { 2 }^{ t } }  \right)  }^{ 11 }$$, where $$t=\log _{ \sqrt { 2 }  }{ { (x }^{ \tfrac 32 } } )$$,
    Solution
    $$2^{ t }= { 2 }^{\displaystyle \log _{ \sqrt { 2 }  }{ { x }^{\tfrac 32  } }  }= { 2 }^{\displaystyle \log _{ 2 }{ { x }^{ 3 } }  } = x^{ 3 }$$
    The general term in the expansion of $$\left( x^{ 3 }+\displaystyle\frac { 1 }{ x^{ 3 } }  \right) ^{ 11 }$$ is
    $$ T_{ r+1 }= ^{ 11 }C_{ r }\left( x^{ 3 } \right) ^{ 11-r }\displaystyle\frac { 1 }{ x^{ 3r } } = ^{ 11 }C_{ r }x^{ 33-6r }$$
    To find the coefficient of $$ x^{ 9 }$$
    Hence, $$ 33-6r = 9$$
    $$ \Rightarrow r= 4$$
    Hence, the coefficient of $$x^{ 9 }$$ is $$^{ 11 }C_{ 4 } = 330$$.
  • Question 4
    1 / -0
    Value of $$\sum { \sum _{ 0\le i<j\le n }^{  }{ { \left( { C }_{ i }+{ C }_{ j } \right)  }^{ 2 } }  } $$ is
    Solution
    $$\displaystyle\sum _{ 0\le i }^{  }{ \sum _{ \le j\le n }^{  }{ { \left( { C }_{ i }+{ C }_{ j } \right)  }^{ 2 } }  } i=0,1,2,...,\left( n-1 \right) $$ where $$j=1,2,3,...,n$$ and $$i<j$$
    $$\displaystyle=n\left( { C }_{ 0 }^{ 2 }+{ C }_{ 1 }^{ 2 }+...+{ C }_{ n }^{ 2 } \right) +2\sum { \sum { { C }_{ i }{ C }_{ j }0\le i<j\le n }  } $$
    $$\displaystyle=n.^{ 2n }{ { C }_{ n } }+\left[ { \left( { C }_{ 0 }+{ C }_{ 1 }+...+{ C }_{ n } \right)  }^{ 2 }-\left( { C }_{ 0 }^{ 2 }+{ C }_{ 1 }^{ 2 }+...+{ C }_{ n }^{ 2 } \right)  \right] $$
    $$\displaystyle=n.^{ 2n }{ { C }_{ n } }+\left( 2n \right) ^{ 2 }-^{ 2n }{ { C }_{ n } }=\left( n-1 \right) .^{ 2n }{ { C }_{ n } }+{ 2 }^{ 2n }.$$
  • Question 5
    1 / -0
    Value(s) of $$x$$ for which the fourth term in the expansion of
    $${ \left( { \sqrt { x }  }^{ 1/(\log _{ 2 }{ x+1 } ) }+{ x }^{ 1/2 } \right)  }^{ 6 }$$ is $$40$$ is (are)
    Solution
    $${ t }_{ 4 }={ _{  }^{ 6 }{ C } }_{ 3 }\left[ { x }^{ 1/2(\log _{ 2 }{ x } +1) } \right] { \left( \cfrac { 1 }{ { x }^{ 12 } }  \right)  }^{ 3 }=40\quad $$
    $$\Rightarrow \left( \cfrac { 3 }{ 2t+2 } +\cfrac { 1 }{ 4 }  \right) t=1$$ where $$t=\log _{ 2 }{ x } $$
    $$\quad \Rightarrow \quad 7t+{ t }^{ 2 }=4t+4\quad \Rightarrow \quad t=-4,1$$
    $$\quad \therefore \quad x=1/16,2$$
  • Question 6
    1 / -0
    If $${x}^{2r}$$ occurs in $${ \left( x+\cfrac { 2 }{ { x }^{ 2 } }  \right)  }^{ n }$$, then $$n-2r$$ must be of the form
    Solution
    Writing the general term
    $$T_{k+1}=\:^{n}C_{r}x^{n-3k}2^{k}$$
    For $$x^{2r}$$
    $$n-3k=2r$$
    $$n-2r=3k$$
    Where K is a positive integer $$\geq 0$$
  • Question 7
    1 / -0
    If the middle term of $${ \left( x+\cfrac { 1 }{ x } \sin ^{ -1 }{ x }  \right)  }^{ 8 }$$ is $$\cfrac { 35{ \pi  }^{ 4 } }{ 8 } $$, then value of $$x$$ can be
    Solution
    Middle term is $$T_{5}$$
    $$T_5=\ ^{8}C_{4}(\sin^{-1}(x))^{4}$$

    $$=70(\sin^{-1}(x))^{4}$$

    $$=\dfrac{35}{8}\pi^{4}$$

    Hence, $$70(\sin^{-1}(x))^{4}=\dfrac{70}{16}\pi^{4}$$

    $$\Rightarrow(\sin^{-1}(x))^{4}=\dfrac{\pi^{4}}{16}$$

    $$\Rightarrow(\sin^{-1}(x)=\pm\dfrac{\pi}{2}$$

    $$\Rightarrow x=\pm1$$
  • Question 8
    1 / -0
    Value of the expression
    $$\quad { C }_{ 0 }+({ C }_{ 0 }+{ C }_{ 1 })+({ C }_{ 0 }+{ C }_{ 1 }+{ C }_{ 2 })+....+({ C }_{ 0 }+{ C }_{ 1 }+....+{ C }_{ n-1 })$$ is
    Solution
    Simplifying, we get
    $$n\:^{n}C_{0}+(n-1)\:^{n}C_{1}+(n-2)\:^{n}C_{2}+...(n-n)\:^{n}C_{n}$$
    $$=n[\:^{n}C_{0}+\:^{n}C_{1}+\:^{n}C_{2}+...\:^{n}C_{n}]-[\:^{n}C_{1}+2\:^{n}C_{2}+3\:^{n}C_{3}+...n\:^{n}C_{n}]$$
    $$=n2^{n}-\cfrac{d(1+x)^{n}}{dx}|_{x=1}$$
    $$=n2^{n}-n2^{n-1}$$
    $$=n2^{n-1}$$
  • Question 9
    1 / -0
    If $${ S }_{ n }=\cfrac { 1 }{ n+1 } \sum _{ i=0 }^{ n }{ \begin{pmatrix} n \\ i \end{pmatrix} } $$, then $$2{ S }_{ n+1 }-{ S }_{ n }$$ equals


    Solution
    $$\sum \:^{n}C_{i}=2^{n}$$ ....sum of binomial coefficients of $$(1+x)^{n}$$

    Hence

    $$S_{n}=\dfrac{2^{n}}{n+1}$$

    Now 

    $$S_{n+1}=\dfrac{2^{n+1}}{n+2}$$

    $$2S_{n+1}-S_{n}$$

    $$=\dfrac{2^{n+2}}{n+2}-\dfrac{2^{n}}{n+1}$$

    $$=2^{n}[\dfrac{4}{n+2}-\dfrac{1}{n+1}]$$

    $$=2^{n}[\dfrac{4n+4-n-2}{(n+1)(n+2)}]$$

    $$=2^{n}[\dfrac{3n+2}{(n+1)(n+2)}]$$
  • Question 10
    1 / -0
    The number of irrational terms in the expansion of $${ \left( { 4 }^{ 1/5 }+{ 7 }^{ 1/10 } \right)  }^{ 45 }$$ is
    Solution
    Total number of terms in the expansion of $$\displaystyle { \left( { 4 }^{ \frac { 1 }{ 5 }  }+{ 7 }^{ \frac { 1 }{ 10 }  } \right)  }^{ 45 }$$ is $$45+1=46$$
    The general term in the expansion is 
    $$\displaystyle { T }_{ r+1 }=^{ 45 }{ { C }_{ r } }\times { 4 }^{ \frac { 45-r }{ 5 }  }\times { 7 }^{ \frac { r }{ 10 }  }$$
    $${ T }_{ r+1 }$$ is rational if $$r=0,10,20,30,40$$
    $$\therefore$$ Number of rational terms $$=5$$
    $$\therefore$$ Number of irrational terms $$=46-5=41$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now