Self Studies

Binomial Theore...

TIME LEFT -
  • Question 1
    1 / -0

    Value of $$\sum { \sum _{ 0\le r<s\le n }^{  }{ { (r+s)\left( { C }_{ r }+{ C }_{ s } \right)  }^{ 2 } }  } $$ is

  • Question 2
    1 / -0

    If $$A=^{ 2n }{ { C }_{ 0 } }.^{ 2n }{ { C }_{ 1 } }+^{ 2n }{ { C }_{ 1 } }^{ 2n-1 }{ { C }_{ 1 } }+^{ 2n }{ { C }_{ 2 } }^{ 2n-2 }{ { C }_{ 1 } }+...$$ then $$A$$ is

  • Question 3
    1 / -0

    The coefficient of $${ x }^{ 9 }$$ in the expansion of $${ \left( { x }^{ 3 }+\cfrac { 1 }{ { 2 }^{ t } }  \right)  }^{ 11 }$$, where $$t=\log _{ \sqrt { 2 }  }{ { (x }^{ \tfrac 32 } } )$$,

  • Question 4
    1 / -0

    Value of $$\sum { \sum _{ 0\le i<j\le n }^{  }{ { \left( { C }_{ i }+{ C }_{ j } \right)  }^{ 2 } }  } $$ is

  • Question 5
    1 / -0

    Value(s) of $$x$$ for which the fourth term in the expansion of
    $${ \left( { \sqrt { x }  }^{ 1/(\log _{ 2 }{ x+1 } ) }+{ x }^{ 1/2 } \right)  }^{ 6 }$$ is $$40$$ is (are)

  • Question 6
    1 / -0

    If $${x}^{2r}$$ occurs in $${ \left( x+\cfrac { 2 }{ { x }^{ 2 } }  \right)  }^{ n }$$, then $$n-2r$$ must be of the form

  • Question 7
    1 / -0

    If the middle term of $${ \left( x+\cfrac { 1 }{ x } \sin ^{ -1 }{ x }  \right)  }^{ 8 }$$ is $$\cfrac { 35{ \pi  }^{ 4 } }{ 8 } $$, then value of $$x$$ can be

  • Question 8
    1 / -0

    Value of the expression
    $$\quad { C }_{ 0 }+({ C }_{ 0 }+{ C }_{ 1 })+({ C }_{ 0 }+{ C }_{ 1 }+{ C }_{ 2 })+....+({ C }_{ 0 }+{ C }_{ 1 }+....+{ C }_{ n-1 })$$ is

  • Question 9
    1 / -0

    If $${ S }_{ n }=\cfrac { 1 }{ n+1 } \sum _{ i=0 }^{ n }{ \begin{pmatrix} n \\ i \end{pmatrix} } $$, then $$2{ S }_{ n+1 }-{ S }_{ n }$$ equals


  • Question 10
    1 / -0

    The number of irrational terms in the expansion of $${ \left( { 4 }^{ 1/5 }+{ 7 }^{ 1/10 } \right)  }^{ 45 }$$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now