Self Studies

Binomial Theorem Test - 32

Result Self Studies

Binomial Theorem Test - 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Number of terms free from radical sign in the expansion of $$\displaystyle \left ( 1+3^{1/3}+7^{1/2} \right )^{10}$$ is
    Solution
    $$(1+(3^{\frac{1}{3}}+7^{\frac{1}{2}}))^{10}$$
    Let 
    $$(3^{\frac{1}{3}}+7^{\frac{1}{2}})=x$$
    Then the above expression reduces to,
    $$(1+x)^{10}$$
    Now writing the general term, we get 
    $$T_{r+1}=\:^{10}C_{r}x^{r}$$
    $$=\:^{10}C_{r}(3^{\frac{1}{3}}+7^{\frac{1}{2}})^{r}$$.
    Hence we get one rational term for each
    $$r=0,2,3,4,6,8,9,10$$
    Hence in total 8 terms.
  • Question 2
    1 / -0
    If $${C}_{r}$$ stands for $$^{n}{C}_{r}$$, then the sum of the series $$\displaystyle\frac { 2\left( \frac { n }{ 2 }  \right) !\left( \frac { n }{ 2 }  \right) ! }{ n! } \left[ { C }_{ 0 }^{ 2 }-2{ C }_{ 1 }^{ 2 }+3{ C }_{ 2 }^{ 2 }-...+{ \left( -1 \right)  }^{ n }\left( n+1 \right) { C }_{ n }^{ 2 } \right] $$ where $$n$$ is an even positive integer, is
    Solution
    $$\displaystyle{ C }_{ 0 }^{ 2 }-2{ C }_{ 1 }^{ 2 }+3{ C }_{ 2 }^{ 2 }-4{ C }_{ 3 }^{ 2 }+...+{ \left( -1 \right)  }^{ n }\left( n+1 \right) { C }_{ n }^{ 2 }$$
    $$\displaystyle=\left[ { C }_{ 0 }^{ 2 }-{ C }_{ 1 }^{ 2 }+{ C }_{ 2 }^{ 2 }-{ C }_{ 3 }^{ 2 }+...+{ \left( -1 \right)  }^{ n }{ C }_{ n }^{ 2 } \right] -\left[ { C }_{ 1 }^{ 2 }-2{ C }_{ 2 }^{ 2 }+3{ C }_{ 3 }^{ 2 }-...+{ \left( -1 \right)  }^{ n }n{ C }_{ n }^{ 2 } \right] $$
    $$\displaystyle={ \left( -1 \right)  }^{ \frac { n }{ 2 }  }\frac { n! }{ \left( \frac { n }{ 2 }  \right) !\left( \frac { n }{ 2 }  \right) ! } -{ \left( -1 \right)  }^{ \frac { n }{ 2 } -1 }\frac { n }{ 2 } .^{ n }{ { C }_{ \frac { n }{ 2 }  } }$$
    $$\displaystyle={ \left( -1 \right)  }^{ \frac { n }{ 2 }  }\frac { n! }{ \left( \frac { n }{ 2 }  \right) !\left( \frac { n }{ 2 }  \right) ! } \left( 1+\frac { n }{ 2 }  \right) $$
    $$\displaystyle\therefore 2\left( \frac { n }{ 2 }  \right) !\left( \frac { n }{ 2 }  \right) !\left[ { C }_{ 0 }^{ 2 }-2{ C }_{ 1 }^{ 2 }+3{ C }_{ 2 }^{ 2 }-...+{ \left( -1 \right)  }^{ n }\left( n+2 \right) { C }_{ n }^{ 2 } \right] $$
    $$\displaystyle={ \left( -1 \right)  }^{ \frac { n }{ 2 }  }\left( n+2 \right) $$
  • Question 3
    1 / -0
    $$(r + 1)^{th}$$ term in the expansion of $$(x + a)^n$$ will be
    Solution
    $$\\ { (x+a) }^{ n }={ x }^{ n }+{ C }_{ 1 }^{ n }{ x }^{ n-1 }a+...+{ C }_{ r }^{ n }{ x }^{ n-r }{ a }^{ r }+...{ a }^{ n }\\ \quad the\quad (r+1)th\quad term\quad is\quad { C }_{ r }^{ n }{ x }^{ n-r }{ a }^{ r }.\quad Hence\quad option\quad (B)\\ $$
  • Question 4
    1 / -0
    If coefficients of $$x^n$$ in $$(1+x)^{101}(1-x+x^2)^{100}$$ is non-zero then $$n$$ cannot be of the form
    Solution
    Given expression is $$(1+x)^{101} (1-x+x^{2})^{100}$$ , Let it be $$y$$
    $$y = (1+x)((1+x)(1-x+x^{2}))^{100}=(1+x)(1+x^{3})^{100}$$
    We know that $$(1+x^{3})^{100}=1+ax^{3}+bx^{6}+cx^{9}+....$$
    $$\Rightarrow y= (1+x)(1+x^{3})^{100}=1+x+ax^{3}+ax^{4}+bx^{6}+bx^{7}+....$$
    We can observe that $$x^{3t+2} $$ terms are missing , which means the coefficients of $$x^{3t+2}$$ terms are $$0$$
    Therefore for the coefficient of $$x^{n}$$ not to be zero , $$n$$ cannot be $$3t+2$$
  • Question 5
    1 / -0
    $$\displaystyle \binom{n}{o}+\binom{n}{1}+\binom{n}{2}+.........+\binom{n}{n}=$$
    Solution
    $$(1+x)^{n}=\:^{n}C_{0}+\:^{n}C_{1}x+\:^{n}C_{2}x^{2}+...\:^{n}C_{n}x^{n}$$
    Substituting x=1, we get 
    $$2^{n}=\:^{n}C_{0}+\:^{n}C_{1}+\:^{n}C_{2}+...\:^{n}C_{n}$$
  • Question 6
    1 / -0
    In the expansion of $$(1 + x)^n$$, the sum of coefficients of odd powers of $$x$$ is
    Solution
    $$\left( 1+x \right) ^{ n }={ C }_{ 0 }+{ C }_{ 1 }x+{ C }_{ 2 }{ x }^{ 2 }+{ C }_{ 3 }{ x }^{ 3 }+...+{ C }_{ n }{ x }^{ n }$$
    Putting $$x=1$$ and $$x=1$$ and subtracting, we get.
    $${ 2 }^{ n }=2\left( { C }_{ 1 }+{ C }_{ 3 }+{ C }_{ 5 }+... \right) $$
    $$\therefore { C }_{ 1 }+{ C }_{ 3 }+{ C }_{ 5 }+...={ 2 }^{ n-1 }$$
    Or the sum of the coefficients of the odd power of $$x$$ is $${2}^{n-1}$$
  • Question 7
    1 / -0
    If $$(1+x)^n=C_0+C_1x+C_2x^2+.....+C_nx^2$$, then the value of $$C_0+C_2+C_4+ .....$$ is
    Solution
    $$(1+x)^{n}=\:^{n}C_{0}+\:^{n}C_{1}x+\:^{n}C_{2}x^{2}+...\:^{n}C_{n}x^{n}$$
    Let $$x=1$$
    $$2^{n}=\:^{n}C_{0}+\:^{n}C_{1}+\:^{n}C_{2}+...\:^{n}C_{n}$$ ...(i)
    Let $$x=-1$$
    $$0=\:^{n}C_{0}-\:^{n}C_{1}+\:^{n}C_{2}+...(-1)^{n}\:^{n}C_{n}$$ ...(ii)
    Adding both gives us
    $$2^{n}=2[\:^{n}C_{0}+\:^{n}C_{2}+\:^{n}C_{4}+...]$$
    $$2^{n=1}=\:^{n}C_{0}+\:^{n}C_{2}+\:^{n}C_{4}+...$$
    Hence the answer is $$2^{n-1}$$
  • Question 8
    1 / -0
    $$^{10}C_1+^{10}C_3+^{10}C_5+^{10}C_7+^{10}C_9=$$
    Solution
    For $$(X+A)^{ n }={ { C }_{ 0 }^{ n }X }^{ n }+\cdots{ C }_{ r }^{ n }{ X }^{ n-r }{ A }^{ r }+\cdots{ C }_{ n }^{ n }A^{ n }$$
    Put $$X=1; A=-1$$
    Hence, $$0= { C }_{ 0 }^{ n }-{ C }_{ 1 }^{ n }+{ C }_{ 2 }^{ n }-{ C }_{ 3 }^{ n }\cdots$$ and so on 
    $$\Rightarrow{ C }_{ 0 }^{ n }+{ C }_{ 2 }^{ n }{ +C }_{ 4 }^{ n }+\cdots={ C }_{ 1 }^{ n }+{ C }_{ 3 }^{ n }+{ C }_{ 5 }^{ n }+\cdots $$     ...(1)
    Now put $$A=1$$ and we see that 
    $${ 2 }^{ n }={ C }_{ 0 }^{ n }+{ C }_{ 1 }^{ n }+{ C }_{ 2 }^{ n }{ +{ C }_{ 3 }^{ n }+C }_{ 4 }^{ n }+{ C }_{ 5 }^{ n }+\cdots$$    ...(2)
    Hence, the sum of 
    $${ C }_{ 1 }^{ n }+{ C }_{ 3 }^{ n }+{ C }_{ 5 }^{ n }+\cdots={ 2 }^{ n-1 }$$    (From (1) and (2))
    In the problem, $$n=10$$
    Hence, answer is $${ 2 }^{ 9 }$$
  • Question 9
    1 / -0
    The value of $$3{\;}^nC_0-8{\;}^nC_1+13 {\;}^nC_2-18 {\;}^nC_3+.....+n$$ terms is
    Solution
    The general term of the series is
    $$Tr = (1)^r (3 + 5r) ^nC_r, r = 0, 1, 2, ......, n$$
    $$\therefore$$ Sum of the series is given by
    $$\displaystyle S=\sum_{r=0}^n(-1)^r(3+5r)^nC_r$$
    $$=3\displaystyle \sum_{r=0}^n(-1)^r {\;}^nC_r+5\displaystyle \sum_{r=0}^n(-1)^r r^nC_r$$
    $$=3(\displaystyle \sum_{r=0}^n(-1)^r {\;}^nC_r)+5(\displaystyle \sum_{r=1}^n(-1)^r r.\frac {n}{r} ^{n-1}C_{r-1})$$
    $$=3(\displaystyle \sum_{r=0}^n(-1)^r {\;}^nC_r)+5n (\displaystyle \sum_{r=1}^n(-1)^r {\;}^{n-1}C_{r-1})$$
    $$=3(0) + 5n(0) = 0$$
  • Question 10
    1 / -0
    Find the middle terms in the expansion of $$\displaystyle \left ( 2x^{2}-\frac{1}{x} \right )^{7}$$
    Solution
    The middle terms will be  $$T_{4}$$ and $$T_{5}$$
    Now, $$T_{4}$$
    $$=T_{3+1}$$
    $$=-\:^{7}C_{3}.2^{4}.x^{8-3}$$
    $$=-35.(16).x^{5}$$
    $$=-560.x^{5}$$
    $$T_{5}$$
    $$=T_{4+1}$$
    $$=\:^{7}C_{4}.2^{3}.x^{6-4}$$
    $$=35.(8).x^{2}$$
    $$=280.x^{2}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now