Self Studies

Binomial Theore...

TIME LEFT -
  • Question 1
    1 / -0

    Number of terms free from radical sign in the expansion of $$\displaystyle \left ( 1+3^{1/3}+7^{1/2} \right )^{10}$$ is

  • Question 2
    1 / -0

    If $${C}_{r}$$ stands for $$^{n}{C}_{r}$$, then the sum of the series $$\displaystyle\frac { 2\left( \frac { n }{ 2 }  \right) !\left( \frac { n }{ 2 }  \right) ! }{ n! } \left[ { C }_{ 0 }^{ 2 }-2{ C }_{ 1 }^{ 2 }+3{ C }_{ 2 }^{ 2 }-...+{ \left( -1 \right)  }^{ n }\left( n+1 \right) { C }_{ n }^{ 2 } \right] $$ where $$n$$ is an even positive integer, is

  • Question 3
    1 / -0

    $$(r + 1)^{th}$$ term in the expansion of $$(x + a)^n$$ will be

  • Question 4
    1 / -0

    If coefficients of $$x^n$$ in $$(1+x)^{101}(1-x+x^2)^{100}$$ is non-zero then $$n$$ cannot be of the form

  • Question 5
    1 / -0

    $$\displaystyle \binom{n}{o}+\binom{n}{1}+\binom{n}{2}+.........+\binom{n}{n}=$$

  • Question 6
    1 / -0

    In the expansion of $$(1 + x)^n$$, the sum of coefficients of odd powers of $$x$$ is

  • Question 7
    1 / -0

    If $$(1+x)^n=C_0+C_1x+C_2x^2+.....+C_nx^2$$, then the value of $$C_0+C_2+C_4+ .....$$ is

  • Question 8
    1 / -0

    $$^{10}C_1+^{10}C_3+^{10}C_5+^{10}C_7+^{10}C_9=$$

  • Question 9
    1 / -0

    The value of $$3{\;}^nC_0-8{\;}^nC_1+13 {\;}^nC_2-18 {\;}^nC_3+.....+n$$ terms is

  • Question 10
    1 / -0

    Find the middle terms in the expansion of $$\displaystyle \left ( 2x^{2}-\frac{1}{x} \right )^{7}$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now