Self Studies

Binomial Theorem Test - 38

Result Self Studies

Binomial Theorem Test - 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The first three terms in the expansion of $$(1+a)^n$$ are $$t_1=1,t_2=-18,t_3=144$$.

    Use the general term to determine a and n.

    Solution
    As we can see from option that n is positive so we proceed with the expansion 
    $$T_1$$ $$=$$ $$^{n}{C}_{0}$$ $$=1$$
    $$T_2$$ $$=$$ $$^{n}{C}_{1}a$$ $$ =n.a=-18   $$        ....(1)
    $$T_3$$ $$=$$ $$^{n}{C}_{2}a^2$$ $$=$$ $$\dfrac{(n)(n-1)}{2}$$.$$a^2$$ $$=144$$       ....(2)
    $$\Rightarrow$$$${(na)(na-a)}$$.$$=288 $$
    Putting the value of $$na$$ from (1), we get
    $$(-18)(-18-a)$$ $$=288$$
    $$\Rightarrow$$$$-18-a$$ $$= -16$$
    $$\Rightarrow$$ $$-a=2$$
    So, $$a= -2$$
    Substitute this value of $$a$$ in equation (1), we get
    $$na=-18$$
    $$\Rightarrow n(-2)=-18$$
    $$\Rightarrow n=9$$
    Thus value of $$a$$ and $$n$$ are $$-2$$ and $$9$$.
  • Question 2
    1 / -0
    The value of $$a_0 ^2-a_1 ^2+a_2 ^2....a_{2n} ^2$$ is
    Solution
    $$(1+x)^{2n}=1+_{  }^{ 2n }{ { C }_{ 1 }x+_{  }^{ 2n }{ { C }_{ 2 }{ x }^{ 2 }+....+_{  }^{ 2n }{ { C }_{ 2n }{ x }^{ 2n } } } }$$
    or,
    $$(1+x)^{2n}=a_0+a_1x+a_2x^2+...+a_{2n}x^{2n}$$                                     ...$$(i)$$
    Similarly,
    $$(1-x)^{2n}=a_0-a_1x+a_2x^2+...+a_{2n}x^{2n}$$                                    ....$$(ii)$$
    As, $$a_0=a_{2n}$$,  $$a_1=a_{2n-1},...$$and so on. So,  (i) and (ii) can be written as:
    $$(1-x)^{2n}=a_{2n}-a_{2n-1}x+a_{2n-2}x^2+...+a_{0}x^{2n}$$ 
    $$(1+x)^{2n}=a_0+a_1x+a_2x^2+...+a_{2n}x^{2n}$$

    So, required answer is coefficient of $$x^{2n}$$ in   $$(1+x)^{2n}.(1-x)^{2n}=$$ coefficient of $$x^{2n}$$ in $$(1-x^2)^{2n}$$
    $${T}_{r+1}=_{  }^{2n}{C}_r(-x^2)^r$$
    $$\quad\quad=_{  }^{2n}{{C}_{r}}(-1)^r(x)^{2r}$$
    So, we need, $$r=n$$. Hence, the answer is  $$(-1)^n.a_n$$
    For $$n-even$$, the answer is option $$A$$, i.e; $$a_n$$
  • Question 3
    1 / -0
    The middle term of expansion of $$\left (\dfrac {10}{x} + \dfrac {x}{10}\right )^{10}$$
    Solution
    Given 

    Fact: middle in the expansion of $$(x+y)^n$$ will be $$\left(\dfrac{n}{2}+1\right)$$th term if $$n$$ is even 

    Hence $$n=10=$$ even 

    So middle term will be $$6$$th term 

    Which is given by, $$^{10}C_5\left(\dfrac{10}{x}\right)^5\left(\dfrac{x}{10}\right)^5=^{10}C_5$$
  • Question 4
    1 / -0
    The value of $$C_1 ^2+C_2 ^2....+C_n ^2$$ (where $$C_i$$ is the $$i^{th}$$ coefficient of $$(1+x)^n$$ expansion), is:
    Solution
    $${ \left( 1+x \right)  }^{ n }=^{ n }{ { C }_{ 0 } }+x\left( ^{ n }{ { C }_{ 1 } } \right) { +{ x }^{ 2 }\left( ^{ n }{ { C }_{ 2 } } \right) + }{ x }^{ 3 }\left( ^{ n }{ { C }_{ 3 } } \right) +...+{ x }^{ n }\left( ^{ n }{ { C }_{ n } } \right) \\ $$
    $${ \left( x+1 \right)  }^{ n }={ x }^{ n }\left( ^{ n }{ { C }_{ 0 } } \right) +{ x }^{ n-1 }\left( ^{ n }{ { C }_{ 1 } } \right) +...+{ x }^{ 0 }\left( ^{ n }{ { C }_{ n } } \right) $$
    Now,  $$\quad \sum _{ r=0 }^{ n }{ { \left( ^{ n }{ { C }_{ r } } \right)  }^{ 2 } } $$= co-efficient of $$x^n$$ in $$(1+x)^{2n}=^{ 2n }{ { C }_{ n } }$$
    Thus,  $$^{ 2n }{ { C }_{ n } }={ \left( ^{ n }{ { C }_{ 0 } } \right)  }^{ 2 }+{ \left( ^{ n }{ { C }_{ 1 } } \right)  }^{ 2 }+...{ \left( ^{ n }{ { C }_{ n } } \right)  }^{ 2 }$$,  where $${ \left( ^{ n }{ { C }_{ i } } \right)  }$$  is the $$i^{th}$$ coefficient of $$(1+x)^n$$ expansion.
    So, $$C_1^2+C_2^2+...+C_n^2={ \left( ^{ 2n }{ { C }_{ n } } \right)  }=\dfrac { 2n! }{ n!n! } $$
  • Question 5
    1 / -0
    If $$f(n)=\sum_{s=1}^n \sum_{r=s}^n \:^nC_r \:^rC_s$$, then $$f(3)=$$
    Solution
    Given : $$f\left( n \right) =\overset { n }{ \underset { s=1 }{ \Sigma  }  }\; \overset { n }{ \underset { r=s }{ \Sigma  }  } { ^{ n }{ C } }_{ r }{ ^{ r }{ C } }_{ s }$$
    To Find : $$f\left( 3 \right) =?$$
    Sol. : $$f\left( n \right) =\left\{ { ^{ n }{ C } }_{ 1 }{ ^{ 1 }{ C } }_{ 1 }+{ ^{ n }{ C } }_{ 2 }{ ^{ 2 }{ C } }_{ 1 }+{ ^{ n }{ C } }_{ 3 }{ ^{ 3 }{ C } }_{ 1 }......{ ^{ n }{ C } }_{ n }.{ ^{ n }{ C } }_{ 1 } \right\} +\left\{ { ^{ n }{ C } }_{ 2 }{ ^{ 2 }{ C } }_{ 2 }+{ ^{ n }{ C } }_{ 3 }{ ^{ 3 }{ C } }_{ 2 }+.....{ ^{ n }{ C } }_{ n }{ ^{ n }{ C } }_{ 2 } \right\} +.....$$
                           $$+\left\{ { ^{ n }{ C } }_{ n-1 }{ ^{ n-1 }{ C } }_{ n-1 }+{ ^{ n }{ C } }_{ n }{ ^{ n }{ C } }_{ n-1 } \right\} +\left\{ { ^{ n }{ C } }_{ n }{ ^{ n }{ C } }_{ n } \right\} $$
    $$\Rightarrow$$ Take $$n=3$$
    $$\Rightarrow f\left( 3 \right) =\left\{ { ^{ 3 }{ C } }_{ 1 }{ ^{ 1 }{ C } }_{ 1 }+{ ^{ 3 }{ C } }_{ 2 }{ ^{ 2 }{ C } }_{ 1 }+{ ^{ 3 }{ C } }_{ 3 }{ ^{ 3 }{ C } }_{ 1 } \right\} +\left\{ { ^{ 3 }{ C } }_{ 2 }{ ^{ 2 }{ C } }_{ 2 }+{ ^{ 3 }{ C } }_{ 3 }{ ^{ 3 }{ C } }_{ 2 } \right\} +\left\{ { ^{ 3 }{ C } }_{ 3 }{ ^{ 3 }{ C } }_{ 3 } \right\} $$
              $$=\left\{ 3+3.2+3 \right\} +\left\{ 3+3 \right\} +\left\{ 1 \right\} $$
              $$=19$$
    Hence, the answer is $$19.$$
  • Question 6
    1 / -0
    The value of $$(n+2)C_02^{n+1}-(n+1)C_12^n+nC_22^{n-1}+....$$ is equal to:
    $$(C_r=\:^nC_r)$$
    Solution
    We know,  $${ \left( 1-x \right)  }^{ n }=_{  }^{ n }{ { C }_{ 0 }{ x }^{ n } }-_{  }^{ n }{ { C }_{ 1 }{ x }^{ n-1 } }+_{  }^{ n }{ { C }_{ 2 }{ x }^{ n-2 } }-...._{  }^{ n }{ { C }_{ n } }$$
    Multiplying by $$x^2$$ on both sides,
    $${ x }^{ 2 }{ \left( 1-x \right)  }^{ n }=_{  }^{ n }{ { C }_{ 0 }{ x }^{ n+2 } }-_{  }^{ n }{ { C }_{ 1 }{ x }^{ n+1 } }+_{  }^{ n }{ { C }_{ 2 }{ x }^{ n } }-....\\ $$
    Taking the derivative,
    $$2x{ \left( 1-x \right)  }^{ n }+n{ x }^{ 2 }{ \left( 1-x \right)  }^{ n-1 }=\left( n+2 \right) { { C }_{ 0 }{ x }^{ n+1 } }-\left( n+1 \right) { { C }_{ 1 }{ x }^{ n } }+n{ { C }_{ 2 }{ x }^{ n-1 } }-....$$
    Putting $$x=2$$ in LHS, we get our required result,
    $$\quad4(-1)^n+n(4)(-1)^{n-1}$$
    $$=4-4n$$,     $$n$$ is even
    $$=4n-4$$,     $$n$$ is odd.

    There is $$no$$ $$option$$ matching the answer.
  • Question 7
    1 / -0
    If $$P_n$$ denotes the product of all the coefficients in the expansion of $$(1+x)^n$$, then $$\dfrac {P_{n+1}}{P_n}$$ is equal to:
    Solution
    $$(1+x)^n$$
    $${ P }_{ n+1 }=_{  }^{ n+1 }{ { C }_{ 0 } }\times _{  }^{ n+1 }{ { C }_{ 1 } }\times _{  }^{ n+1 }{ { C }_{ 2 } }\times ........\times _{  }^{ n+1 }{ { C }_{ n+1 } }\\ { P }_{ n }=_{  }^{ n }{ { C }_{ 0 } }\times _{  }^{ n }{ { C }_{ 1 } }\times _{  }^{ n }{ { C }_{ 2 } }\times ........\times _{  }^{ n }{ { C }_{ n } }$$
    $$\quad \prod _{ r=0 }^{ n }{ \dfrac { _{  }^{ n+1 }{ { C }_{ r } } }{ _{  }^{ n }{ { C }_{ r } } } \quad \quad \quad \quad \quad \quad \quad \left( \because _{  }^{ n+1 }{ { C }_{ n+1 }=1 } \right)  } \\ =\prod _{ r=0 }^{ n }{ \dfrac { (n+1)! }{ r!(n+1-r)! }  } \times \dfrac { r!(n-r)! }{ n! } \\ =\prod _{ r=0 }^{ n }{ \dfrac { (n+1) }{ \left( n-r+1 \right)  }  } \\ ={ \left( n+1 \right)  }^{ n }\prod _{ r=0 }^{ n }{ \dfrac { 1 }{ n-r+1 }  } \\ =\dfrac { { \left( n+1 \right)  }^{ n } }{ \left( n+1 \right) ! } $$
    Hence, the correct option is $$D$$.
  • Question 8
    1 / -0
    If $$^{n-1}C_{r}=(k^2-3)\:^nC_{r+1}$$, then $$k\:\:\epsilon$$
    Solution
    Given, $$^{n-1}{C}_{r}=(k^2-3)^{n}{C}_{r+1}$$
    $$\Rightarrow$$$$\dfrac{^{n-1}{C}_{r}}{^{n}{C}_{r+1}}=(k^2-3)$$      ....Using $$^{n}{C}_{x}=\dfrac{n}{x}.^{n-1}{C}_{x-1}$$
    $$\Rightarrow$$$$\dfrac{r+1}{n}=(k^2-3)$$     ....As $$n>r+1$$ 
    So, $$0<\dfrac{r+1}{n}\le1$$
    Therefore, $$0<k^2-3\le1$$
    $$\Rightarrow 3<k^2\le4$$
    $$\Rightarrow \sqrt{3}<k\le2$$        
    So, k$$\in$$$$(\sqrt{3},2]$$ 
  • Question 9
    1 / -0
    The value of $$\displaystyle \:^{50}C_4+\sum_{r=1}^6 \:^{56-r}C_3$$ is
    Solution
    $$^{50}{C}_{4}$$+ $$\sum _{ r=1 }^{6  }{^{56-r}{C}_{3}  }$$ 
    $$^{50}{C}_{4}$$+$$^{50}{C}_{3}$$+$$^{51}{C}_{3}$$+.................+$$^{55}{C}_{3}$$                 Using $$^{n}{C}_{r}$$+$$^{n}{C}_{r-1}$$=$$^{n+1}{C}{r}$$
    $$^{51}{C}_{4}$$+$$^{51}{C}_{3}$$+.................+$$^{55}{C}_{3}$$   
    Similarly the series would become like this
    $$^{55}{C}_{4}$$+$$^{55}{C}_{3}$$            Using $$^{n}{C}_{r}$$+$$^{n}{C}_{r-1}$$=$$^{n+1}{C}{r}$$
    $$^{56}{C}_{4}$$
  • Question 10
    1 / -0
    The coefficient of $$x^{53}$$ in the following expansions.
    $$\displaystyle \sum_{m=0}^{100} \,^{100}C_m(x-3)^{100-m}\cdot 2^m$$ is
    Solution
    $$\displaystyle \sum_{m=0}^{100} \, ^{100}C_m(x-3)^{100-m}\cdot 2^m$$

    Above expansion can be rewritten as

    $$[(x-3)+2]^{100}=(x-1)^{100}=(1-x)^{100}$$

    $$\therefore x^{53}$$ will occur in $$T_{54}$$ i.e. $$54^{th}$$ term.

    So, $$m=53$$

    $$\Rightarrow T_{54}={ }^{100}C_{53}(-x)^{53}$$

    $$\therefore $$ Required coefficient is $${ }^{-100} C_{53}$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now