Self Studies

Binomial Theore...

TIME LEFT -
  • Question 1
    1 / -0

    The first three terms in the expansion of $$(1+a)^n$$ are $$t_1=1,t_2=-18,t_3=144$$.

    Use the general term to determine a and n.

  • Question 2
    1 / -0

    The value of $$a_0 ^2-a_1 ^2+a_2 ^2....a_{2n} ^2$$ is

  • Question 3
    1 / -0

    The middle term of expansion of $$\left (\dfrac {10}{x} + \dfrac {x}{10}\right )^{10}$$

  • Question 4
    1 / -0

    The value of $$C_1 ^2+C_2 ^2....+C_n ^2$$ (where $$C_i$$ is the $$i^{th}$$ coefficient of $$(1+x)^n$$ expansion), is:

  • Question 5
    1 / -0

    If $$f(n)=\sum_{s=1}^n \sum_{r=s}^n \:^nC_r \:^rC_s$$, then $$f(3)=$$

  • Question 6
    1 / -0

    The value of $$(n+2)C_02^{n+1}-(n+1)C_12^n+nC_22^{n-1}+....$$ is equal to:
    $$(C_r=\:^nC_r)$$

  • Question 7
    1 / -0

    If $$P_n$$ denotes the product of all the coefficients in the expansion of $$(1+x)^n$$, then $$\dfrac {P_{n+1}}{P_n}$$ is equal to:

  • Question 8
    1 / -0

    If $$^{n-1}C_{r}=(k^2-3)\:^nC_{r+1}$$, then $$k\:\:\epsilon$$

  • Question 9
    1 / -0

    The value of $$\displaystyle \:^{50}C_4+\sum_{r=1}^6 \:^{56-r}C_3$$ is

  • Question 10
    1 / -0

    The coefficient of $$x^{53}$$ in the following expansions.
    $$\displaystyle \sum_{m=0}^{100} \,^{100}C_m(x-3)^{100-m}\cdot 2^m$$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now