Self Studies

Binomial Theorem Test - 40

Result Self Studies

Binomial Theorem Test - 40
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In the expansion of $$\left (x + \dfrac {1}{x}\right )^{n}$$, then the coefficient of the term indepenent of x is
    Solution
    In the expansion of $$\left (x + \dfrac {1}{x}\right )^{n}$$, $$r^{th}$$ term is

    $$t_{r+1}={}^{n}C_{r} x^{n-r} \left(\dfrac{1}{x}\right)^{r}$$

    $$\implies t_{r+1}={}^{n}C_{r} x^{n-r} x^{-r}$$

    $$\implies t_{r+1}={}^{n}C_{r} x^{n-2r}$$ ... $$(i)$$

    We need to find the coefficient of $$x^{0}$$

    Then substitute $$n-2r=0\implies r=\dfrac{n}{2}$$

    Substitute $$r$$ in RHS of $$(i)$$, we get

    $$t_{r+1}={}^{n}C_{\frac{n}{2}}x$$

    Then, coefficient of $$x$$ is $$\displaystyle ={}^{n}C_{\frac{n}{2}}=\dfrac{n!}{\left(\dfrac{n}{2}\right)! \left(n-\dfrac{n}{2}\right)!}=\dfrac{n!}{\left(\dfrac{n}{2}\right)!\left(\dfrac{n}{2}\right)!}=\dfrac{n!}{\left[\left(\dfrac{n}{2}\right)!\right]^{2}}$$

    Hence, coefficient of $$x^{0}=x$$ is $$\dfrac{n!}{\left[\left(\dfrac{n}{2}\right)!\right]^{2}}$$
  • Question 2
    1 / -0
    The sum of the series $$^{20}C_0 - \,^{20}C_1+\,^{20}C_2-\,^{20}C_3+...+\,^{20}C_{10}$$ is 
    Solution
    On putting $$x=-1$$ in
    $$(1+x)^{20}=^{20}C_0 + ^{20}C_1x+... +{20}C_{10}x^{10} + ... + \,^{20} C_{20} x^{20}$$
    We get,
    $$0=\,^{20}C_0 - \,^{20}C_1+... - \,^{20}C_9+\,^{20}C_{10} - \, ^{20}C_{11}+ ... + \,^{20}C_{20}$$
    $$\Rightarrow 0 = \,^{20}C_0 - \,^{20}C_1+ ... - \,^{20}C_9 + \,^{20}C_{10}-\,^{20}C_9+...+\,^{20}C_0$$ ........ $$[\because {}^{n}C_{r}={}^{n}C_{n-r}]$$
    $$\Rightarrow 0 = 2(^{20}C_0-\,^{20}C_1+ ... -\,^{20}C_9)+\,^{20}C_{10}$$ 
    $$\Rightarrow \,^{20}C_{10} = 2(^{20}C_0 - \,^{20}C_1+ ... + \,^{20}C_{10})$$ .... [Adding $${}^{20}C_{10}$$ on both the sides]
    $$\Rightarrow \,^{20}C_0 - \,^{20}C_1+...+\,^{20}C_{10}=\dfrac{1}{2}\,^{20}C_{10}$$
  • Question 3
    1 / -0
    If $$T_r=^{2016}C_rx^{2016-r}$$, for $$r=0, 1, ,....2016$$, then $$(T_0 - T_2+T_4....+T_{2016})^2+(T_1-T_3+T_5....T_{2015})^2$$ is equal to - 
    Solution
    Let $$i$$ represent iota.
    $$(T_0-T_2+T_4+\dots+T_{2016}) = (T_0+i^2T_2+i^4T_4+\dots+i^{2016}T_{2016})\dots(1)$$
    Now, multiply $$(T_1-T_3+T_5+\dots-T_{2015})$$ with $$-i$$ to get  $$-(iT_1+i^3T_3+i^3T_5+\dots+i^{2015}T_{2015})\dots(2)$$
    $$\implies (T_0-T_2+T_4+\dots+T_{2016})^2+(T_1-T_3+T_5+\dots-T_{2015})^2$$
    $$= (T_0+i^2T_2+i^4T_4+\dots+i^{2016}T_{2016})^2 + i^4(T_1-T_3+T_5+\dots-T_{2015})^2$$
    $$ = (T_0+i^2T_2+i^4T_4+\dots+i^{2016}T_{2016})^2 -(iT_1+i^3T_3+i^3T_5+\dots+i^{2015}T_{2015})^2$$
    $$ = (T_0+iT_1+i^2T_2+\dots+i^{2016}T_{2016}) (T_0-iT_1+i^2T_2-i^3T_3\dots)$$ (As $$a^2-b^2 = (a+b)(a-b)$$)
    Now, consider these terms seperately
    $$(T_0+iT_1+i^2T_2+\dots)=(^{2016}C_0x^{2016}i^0 +^{2016}C_1x^{2015}i^1\dots) = (i+x)^{2016}$$
    $$(T_0-iT_1+i^2T_2-i^3T_3\dots) = (^{2016}C_0(ix)^{2016} +^{2016}C_1(ix)^{2015}\dots) = (1+ix)^{2016}$$
    $$\therefore (T_0+iT_1+i^2T_2+\dots+i^{2016}T_{2016}) (T_0-iT_1+i^2T_2-i^3T_3\dots)$$
    $$= (i+x)^{2016}\times(1+ix)^{2016}$$
    $$= [(i+x)(1+ix)]^{2016}$$
    $$= [i-x+x+ix^2]^{2016}$$
    $$= (1+x^2)^{2016}$$
  • Question 4
    1 / -0
    If $$C_{0}, C_{1}, C_{2}, ...., C_{n}$$ are binomial coefficients of order $$n$$, then the value of $$\dfrac {C_{1}}{2} + \dfrac {C_{3}}{4} + \dfrac {C_{5}}{6} + .... =$$
    Solution
    $$(1+x)^{ n }=C_{ 0 }+C_{ 1 }x+C_{ 2 }x^{ 2 }+C_{ 3 }x^{ 3 }+......C_{ n }x^{ n }$$
    Integrating, We have
    $$ \dfrac { (1+x)^{ n+1 } }{ n+1 } =C_{ 0 }x+C_{ 1 }\dfrac { x^{ 2 } }{ 2 } +C_{ 2 }\dfrac { x^{ 3 } }{ 3 } +.....C_{ n }\dfrac { x^{ n+1 } }{ n+1 } $$
    Putting, $$x=1$$
    $$ \dfrac { (2)^{ n+1 } }{ n+1 } =C_{ 0 }+C_{ 1 }\dfrac { 1 }{ 2 } +C_{ 2 }\dfrac { 1 }{ 3 } +....$$
    Putting, $$x=-1$$
    $$ \dfrac { (0)^{ n+1 } }{ n+1 } =-C_{ 0 }+C_{ 1 }\dfrac { 1 }{ 2 } +C_{ 2 }\dfrac { (-1) }{ 3 } +....$$
    Adding above two equations we have,
    $$ \dfrac { (2)^{ n+1 } }{ n+1 } =2\left(\dfrac { C_{ 1 } }{ 2 } +\dfrac { { C }_{ 3 } }{ 4 } .....\right)$$
    $$\implies \dfrac { (2)^{ n } }{ n+1 } =\dfrac { C_{ 1 } }{ 2 } +\dfrac { { C }_{ 3 } }{ 4 } .....$$
    Hence, option D is correct. 
  • Question 5
    1 / -0
    The total number of terms in the expansion of $$(x + a)^{47} - (x - a)^{47}$$ after simplification is
    Solution
    $${ \left( x+a \right)  }^{ 47 }-{ \left( x-a \right)  }^{ 47 }$$
    When we expand the above equation using binomial expansion
    $$ (x +y)^{n} = \displaystyle (\sum_{k=0}^{n} {^{n}C_k} x^{k}y^{n-k}) $$
    So the above equation becomes
    $$ (x +a)^{47} = \displaystyle (\sum_{k=0}^{47} {^{47}C_k} x^{k}a^{47-k}) $$
    $$ (x -a)^{47} = \displaystyle (\sum_{k=0}^{47} {^{47}C_k} x^{k}(-a)^{47-k}) $$
    $${ \left( x+a \right)  }^{ 47 }\Rightarrow $$There are 48 terms in the expansion and all are positive
    $${ \left( x-a \right)  }^{ 47 }\Rightarrow $$There are 48 terms in the expansion
    The terms with odd powers of a will be cancelled and those with even powers of a will add up.
    24 terms will be positive and 24 negative in the expansion of $$ (x-a)^{47} $$
    48 terms positive-[24 terms negative and 24 terms positive]
    $$=48\quad terms\quad positive +24\quad terms\quad negative+24\quad terms\quad positive$$
    $$=24$$ terms
  • Question 6
    1 / -0
    Let $$((1 + x) + x^{2})^{9} = a_{0} + a_{1}x + a_{2}x^{2} + ..... + a_{18}x^{18}$$. Then
    Solution
    Given : $$((1 + x) + x^{2})^{9} = a_{0} + a_{1}x + a_{2}x^{2} + ..... + a_{18}x^{18}$$ ..... $$(i)$$
    Put $$x=1$$ in $$(i)$$, we get
    $$(1+1+1)^{9}=a_{0}+a_{1}+a_{2}+.....+a_{18}$$ 
    $${3}^{9}=a_{0}+a_{1}+a_{2}+.....+a_{18}$$ .... $$(ii)$$
    Put $$x=-1$$ in $$(i)$$, we get
    $$(1-1+1)^{9}=a_{0}-a_{1}+a_{2}-a_{3}+a_{4}-..... -a_{17}+a_{18}$$
    $$1=a_{0}-a_{1}+a_{2}-a_{3}+a_{4}-..... -a_{17}+a_{18}$$ ..... $$(iii)$$
    Adding $$(ii)$$ and $$(iii)$$, we get
    $$3^{9}+1=a_{0}+a_{1}+....+a_{18}+a_{0}-a_{1}+a_{2}-.....-a_{17}+a_{18}$$
                 $$=2a_{0}+2a_{2}+2a_{4}+....+2a_{18}$$
    $$\implies 2(a_{0}+a_{2}+a_{4}+....+a_{18})=3^{9} + 1$$
    $$\implies a_{0} + a_{2} + ..... + a_{18} = \dfrac {3^{9} + 1}{2} \rightarrow even$$
    Hence, $$a_{0}+a_{2}+a_{4}+....+a_{18}$$ is even.
  • Question 7
    1 / -0
    Let $$n \ge 5$$ and $$b \neq 0$$. In the binomial expansion of $${ \left( a-b \right)  }^{ n }$$, the sum of the 5th and 6th terms is zero then $${ a }/{ b }$$ equals
    Solution
    Solution:
    Given that: 
    $$n\ge5,b\neq0,$$ given expansion is $$(a-b)^n$$ and 
    $$t_5+t_6=0$$
    To find: $$\cfrac ab=?$$
    Solution:
    $$t_5={}^nC_4a^4(-b)^{(n-4)}$$ and
    $$t_6={}^nC_5a^5(-b)^{(n-5)}$$
    $$\because t_5+t_6=0$$
    $$\therefore {}^nC_4a^4(-b)^{(n-4)}$$$$+{}^nC_5a^5(-b)^{(n-5)}=0$$
    $$\Longrightarrow {}^nC_5a={}^nC_4b$$
    $$\Longrightarrow \cfrac ab=\cfrac{{}^nC_4}{{}^5C_5}=\cfrac{\cfrac{n!}{4!(n-4)!}}{\cfrac{n!}{5!(n-5)!}}=\cfrac{5}{n-4}$$
    Hence, A is the correct answer.
  • Question 8
    1 / -0
    Given $$(1-2x+5x^2-10x^3)(1+x)^n=1+a_1x+a_2x^2+...$$ and that $$a_1^2=2a_2$$ then the value of $$n$$ is-
    Solution
    Given that $$\left( 1-2x+5{ x }^{ 2 }-10{ x }^{ 3 } \right) { \left( 1+x \right)  }^{ n }=1+{ a }_{ 1 }x+{ a }_{ 2 }{ x }^{ 2 }+...$$
    Given that $${ { a }_{ 1 } }^{ 2 }=2{ a }_{ 2 }$$
    Here $${ a }_{ 1 }$$ is the coefficient of $$x$$ and $${ a }_{ 2 }$$ is the coefficient of $${ x }^{ 2 }$$,
    $$\Longrightarrow { a }_{ 1 }=n-2$$ and $$\Longrightarrow { a }_{ 2 }=-2n+{ C }_{ 2 }+5$$
    Substituting these values in the given relation we get,
    $$\Longrightarrow { \left( n-2 \right)  }^{ 2 }=2\left( 5-2n+\frac { n\left( n-1 \right)  }{ 2 }  \right) \\ \Longrightarrow n=6\\ $$
  • Question 9
    1 / -0
    In the expansion of $${ \left( 3x-\cfrac { 1 }{ { x }^{ 2 } }  \right)  }^{ 10 }$$, the $$5^{th}$$ term from the end is
    Solution
    There are $$11$$ terms in the expansion of $${ \left( 3x-\cfrac { 1 }{ { x }^{ 2 } }  \right)  }^{ 10 }$$
    Therefore, $$5^{th}$$ term from the end.
    $$=(10-5+2)^{th}$$ term from beginning
    $$={ T }_{ 7 }={ _{  }^{ 10 }{ C } }_{ 6 }{ \left( 3x \right)  }^{ 10-6 }{ \left( -\cfrac { 1 }{ { x }^{ 2 } }  \right)  }^{ 6 }$$
    $$=\cfrac { 10! }{ 6!4! } { 3 }^{ 4 }{ x }^{ 4 }\cfrac { 1 }{ { x }^{ 12 } }$$
    $$ =\cfrac { 17010 }{ { x }^{ 8 } } $$
  • Question 10
    1 / -0
    The coefficient of $$x^{49}$$ in the product $$(x - 1) (x - 2) (x - 3) .... (x - 50)$$ is
    Solution
    Coefficient of $$x^{49}$$ in product of $$(x-1)(x-2)(x-3)(x-4)........(x-50)$$
    We know that,
    $$(x-1)(x-2)(x-3)(x-4)........(x-n)=x^n-(1+2+3+....+n)x^{n-1}+.......$$
    Coefficient of $$x^{49}=-(1+2+3+...+50)$$
    $$=-\cfrac{50\times51}{2}$$
    $$=-1275$$
    Hence, B is the correct option.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now