Self Studies

Binomial Theore...

TIME LEFT -
  • Question 1
    1 / -0

    In the expansion of $$\left (x + \dfrac {1}{x}\right )^{n}$$, then the coefficient of the term indepenent of x is

  • Question 2
    1 / -0

    The sum of the series $$^{20}C_0 - \,^{20}C_1+\,^{20}C_2-\,^{20}C_3+...+\,^{20}C_{10}$$ is 

  • Question 3
    1 / -0

    If $$T_r=^{2016}C_rx^{2016-r}$$, for $$r=0, 1, ,....2016$$, then $$(T_0 - T_2+T_4....+T_{2016})^2+(T_1-T_3+T_5....T_{2015})^2$$ is equal to - 

  • Question 4
    1 / -0

    If $$C_{0}, C_{1}, C_{2}, ...., C_{n}$$ are binomial coefficients of order $$n$$, then the value of $$\dfrac {C_{1}}{2} + \dfrac {C_{3}}{4} + \dfrac {C_{5}}{6} + .... =$$

  • Question 5
    1 / -0

    The total number of terms in the expansion of $$(x + a)^{47} - (x - a)^{47}$$ after simplification is

  • Question 6
    1 / -0

    Let $$((1 + x) + x^{2})^{9} = a_{0} + a_{1}x + a_{2}x^{2} + ..... + a_{18}x^{18}$$. Then

  • Question 7
    1 / -0

    Let $$n \ge 5$$ and $$b \neq 0$$. In the binomial expansion of $${ \left( a-b \right)  }^{ n }$$, the sum of the 5th and 6th terms is zero then $${ a }/{ b }$$ equals

  • Question 8
    1 / -0

    Given $$(1-2x+5x^2-10x^3)(1+x)^n=1+a_1x+a_2x^2+...$$ and that $$a_1^2=2a_2$$ then the value of $$n$$ is-

  • Question 9
    1 / -0

    In the expansion of $${ \left( 3x-\cfrac { 1 }{ { x }^{ 2 } }  \right)  }^{ 10 }$$, the $$5^{th}$$ term from the end is

  • Question 10
    1 / -0

    The coefficient of $$x^{49}$$ in the product $$(x - 1) (x - 2) (x - 3) .... (x - 50)$$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now